Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 2020-2026, 2014
LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory
Uptake to cuprous oxide (Cu2O) nanoparticle synthesis with various particle sizes and shapes via supersaturation chemistry approach (LaMer model) has been conducted. Ascorbic acid and maltodextrine as reducing agents and polyvinylpyrrolidone (PVP) as a surfactant were utilized for synthesis of Cu2O nanoparticles in aqueous solution. The narrow particle size range was achieved by controlling the kinetics of nucleation and growth of particles to satisfy LaMer theory. This mean was performed utilizing different reducing agents (ascorbic acid and maltodextrin) and also, changing the reducing agent addition condition. The results showed the reducing agent addition condition, varying the size of Cu2O nanoparticles from 89 nm to 74 nm for drop-wisely and at-once routes, respectively. The samples were characterized by XRD, SEM, and UV-Vis spectroscopy. The results indicate the shape of as-prepared cuprous oxide nanoparticles have close relationship with thermodynamic and kinetic conditions, and also reducing addition condition.
[References]
  1. El-Sayed MA, Acc. Chem. Res., 37, 326, 2004
  2. Alivisatos AP, Endeavour, 21, 56, 1997
  3. Alivisatos AP, Science, 271(5251), 933, 1996
  4. Yin Y, Alivisatos AP, Nature, 437, 664, 2005
  5. Murray CB, Sun S, Doyle H, Betley T, Mater. Res. Bull., 26, 985, 2001
  6. Peng XG, Wickham J, Alivisatos AP, J. Am. Chem. Soc., 120(21), 5343, 1998
  7. Mahshid S, Askari M, Ghamsari MS, Afshar N, Lahuti S, J. Alloys Compd., 478, 586, 2009
  8. Finney EE, Finke RG, J. Colloid Interface Sci., 317(2), 351, 2008
  9. Rioux R (Ed.), Model systems in catalysis: single crystals to supported enzyme mimics, Springer, New York, 2010
  10. Rodriguez JA, Synthesis, Properties and applications of oxide nanomaterials, Wiley-VCH, Weinheim, 2007
  11. Delmon B, Ertl G, Knozinger H, Weitkamp J (Eds.), Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim, 1997
  12. Kung HH, Transition metal oxides: surface chemistry and catalysis, Elsevier, Amsterdam, 1989
  13. Wang XQ, Hanson JC, Frenkel AI, Kim JY, Rodriguez JA, J. Phys. Chem. B, 108(36), 13667, 2004
  14. Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305, 1998
  15. Zhang JT, Liu JF, Peng Q, Wang X, Li Y, Chem. Mater., 18, 867, 2006
  16. Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, J. Phys. Chem., 113, 14448, 2009
  17. Huang WC, Lyu LM, Yang YC, Huang MH, J. Am. Chem. Soc., 134(2), 1261, 2012
  18. Poizot P, Laruelle S, Grugeon S, Dupont L, Taracon JM, Nature, 407, 496, 2000
  19. Lee YJ, Kim S, Park SH, Park H, Huh YD, Mater. Lett., 65, 818, 2011
  20. Zhang L, Wang H, J. Phys. Chem., 115, 18479, 2011
  21. Lu CH, Qi LM, Yang JH, Wang XY, Zhang DY, Xie JL, Ma JM, Adv. Mater., 17(21), 2562, 2005
  22. Kuo CH, Huang MH, J. Am. Chem. Soc., 130(38), 12815, 2008
  23. Orel ZC, Anzlovar A, Drazi G, Zigon M, Cryst. Growth Des., 7, 453, 2007
  24. Grez P, Herrera F, Riveros G, Henriquez R, Ramirez A, Munoz E, Mater. Lett., 92, 413, 2013
  25. Bao H, Zhang W, Shang D, Hua Q, Ma Y, Jiang Z, J. Phys. Chem., 114, 6676, 2010
  26. Kuo CH, Chen CH, Huang MH, Adv. Funct. Mater., 17(18), 3773, 2007
  27. Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B, J. Phys. Chem., 115, 15288, 2011
  28. Zhang Y, Deng B, Zhang T, Gao D, Xu AW, J. Phys. Chem., 114, 5073, 2010
  29. Zhang ZL, Che HW, Wang YL, Gao JJ, Zhao LR, She XL, Sun J, Gunawan P, Zhong ZY, Su FB, Ind. Eng. Chem. Res., 51(3), 1264, 2012
  30. Ko E, Choi J, Okamoto K, Tak Y, Lee J, ChemphysChem, 7, 1505, 2006
  31. Gou L, Murphy CJ, Nano Lett., 3, 231, 2003
  32. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847, 1950
  33. Sugimoto T, J. Colloid Interface Sci., 309(1), 106, 2007
  34. Sugimoto T, Shiba F, Sekiguchi T, Itoh H, Colloids Surf., A, 164, 183, 2000
  35. Poot AGV, Gattorno GR, Dominguez OES, Diaz RTP, Pesqueira M, Oskam G, Nanoscale, 2, 2710, 2010
  36. Ma D, Liu HB, Yang HB, Fu WY, Zhang YY, Yuan MX, Sun P, Zhou XM, Mater. Chem. Phys., 116(2-3), 458, 2009
  37. Viswanatha R, Sarma DD, Chem. Eur. J., 12, 180, 2006
  38. Bai YK, Yang TF, Cu Q, Cheng GA, Zheng RT, Powder Technol., 227, 35, 2012
  39. Wang L, Wei G, Qi B, Zhou HL, Liu ZG, Song YH, Yang XR, Li Z, Appl. Surf. Sci., 252(8), 2711, 2006
  40. Gao G, Wu H, He R, Cui D, Corros. Sci., 52, 2804, 2010
  41. Carotenuto G, Denicola S, Nicolais L, J. Nanopart. Res., 3, 469, 2001