Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 2003-2007, 2014
Direct ethanol production from dextran industrial waste water by Zymomonas mobilis
The direct production of ethanol from dextran industrial waste water was investigated by using Zymomonas mobilis via batch and semi-continuous fermentation mode. In batch fermentation, pretreated waste water (unsterilized and sterilized), pH value (3.8 and 6.0), and Mg2+ (with and without) was compared with OD600, sugar and ethanol concentration. After 24 h fermentation, sugar in the dextran waste water was almost exhausted, and the amount of ethanol accumulated reached 24.33-29.92 g/l, which is nearly 99% of the theoretical yield of ethanol. Kinetic parameters of Z. mobilis in batch fermentation were also investigated. The raw dextran waste water was also used in semi-continuous fermentation. After 48 h fermentation, the production of ethanol was 28.65 g/l. These results indicated that dextran waste water may be used as a candidate substrate and Z. mobilis could convert the raw material into ethanol directly.
[References]
  1. Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1, 2008
  2. Govumoni SP, Koti S, Kothagouni SY, Linga VR, Carbohyd. Polym., 91, 646, 2013
  3. Galbe M, Zacchi G, Biomass Bioenerg., 46, 70, 2012
  4. Van Dyk JS, Pletschke BI, Biotechnol. Adv., 30, 1458, 2012
  5. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW, Biotechnol. Bioeng., 109(4), 1083, 2012
  6. Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, et al., Nat. Biotechnol., 23, 63, 2005
  7. Matsushika A, Inoue H, Kodaki T, Sawayama S, Appl. Microbiol. Biotechnol., 84(1), 37, 2009
  8. Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Ch JH, et al., Biotechnol. Adv., 30, 989, 2012
  9. Kambam PKR, Henson MA, Biofuels., 1, 729, 2010
  10. Zhang W, Geng A, Biotechnol. Biofuels., 5, 46, 2012
  11. Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S, Science, 267(5195), 240, 1995
  12. Deanda K, Zhang M, Eddy C, Picataggio S, Appl. Env. Microbiol., 62, 4465, 1996
  13. Linger JG, Adney WS, Darzins A, Appl. Environ. Microbiol., 76, 6360, 2010
  14. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO, Biofuels., 237, 2007
  15. Zhou S, Yomano LP, Shanmugam KT, Ingram LO, Biotechnol. Lett., 27(23-24), 1891, 2005
  16. Kim Y, Ingram LO, Shanmugam KT, Appl. Environ. Microbiol., 73, 1766, 2007
  17. Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S, J. Ind. Microbiol. Biotechnol., 38, 1371, 2010
  18. Causey TB, Zhou S, Shanmugam KT, Ingram LO, Proc. Natl. Acad. Sci. USA, 100, 825, 2003
  19. Dunlop M, Biotechnol. Biofuels., 4, 32, 2011
  20. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G, Science, 314, 1565, 2006
  21. Pienkos P, Zhang M, Cellulose., 16, 743, 2009
  22. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189, 2012
  23. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, et al., Biotechnol. Biofuels., 5, 75, 2012
  24. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494, 2008
  25. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ, Bioresour. Technol., 108, 83, 2012
  26. Tan IS, Lam MK, Lee KT, Carbohyd. Polym., 94, 561, 2013
  27. Brown DE, McAvoy A, J. Chem. Technol. Biotechnol., 48, 405, 1990
  28. Goodman AE, Rogers PL, Scotnicki M, Appl. Env. Microbiol., 44, 496, 1982
  29. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Appl. Microbiol. Biotechnol., 95(1), 189, 2012
  30. He MX, Wu B, Shui ZX, Hu QC, Wang WG, Tan FR, Tang XY, Zhu QL, Pan K, Li Q, Su XH, Biotechnol. Biofuel., 5, 75, 2012
  31. Kim IS, Barrow KD, Rogers PL, Appl. Env. Microbiol., 66, 186, 2000
  32. Jeon YI, Svenson CJ, Rogers PL, FEMS Microbiol. Lett., 244, 85, 2005
  33. Jeffries TW, Nat. Biotechnol., 23, 40, 2005
  34. Swings J, Deley J, Bacterial. Rev., 41, 1, 1977