Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1994-2002, 2014
Reliable modeling of discharge process for adsorbed natural gas storage tanks
Natural gas consumption has doubled in the last fifteen years. Among all storage techniques, adsorbed natural gas (ANG) provides a reliable vehicle for safe utilization of natural gas. Despite all favorable characteristics of the ANG process, thermal adverse effects during charge and discharge processes are the most challenging issues facing adsorbed natural gas applications, especially for automotive usage. Mathematical modeling of an ANG tank can provide a reliable method to analyze and solve such problems. A robust and lumped model is presented to mimic the discharge process of an ANG tank storing pure component. The proposed model is very convenient compared to other available conventional models that require extensive computational efforts. Two experimental measurements and two simulation data sets (borrowed from literature) are recruited to validate the model predictions. The simulation results indicate proper agreement between the proposed model predictions and the validation data.
[References]
  1. Chang KJ, Talu O, Appl. Therm. Eng., 16, 359, 1996
  2. Mota JPB, Rodrigues AE, Saatdjian E, Tondeur D, Carbon, 35, 1259, 1997
  3. Zhou Z, Appl. Therm. Eng., 17, 1099, 1997
  4. MacDonald JAF, Quinn DF, Fuel, 77(1), 61, 1998
  5. Vasiliev LL, Kanonchik LE, Mishkinis DA, Rabetsky MI, Int. J. Therm. Sci., 39, 1047, 2000
  6. Inomata K, Kanazawa K, Urabe Y, Hosono H, Araki T, Carbon, 40, 87, 2002
  7. Mota JPB, Esteves IAAC, Rostam-Abadi M, Comput. Chem. Eng., 28(11), 2421, 2004
  8. Bastos-Neto M, Torres A, Azevedo D, Cavalcante C, Adsorpt., 11, 147, 2005
  9. Basumatary R, Dutta P, Prasad M, Srinivasan K, Carbon, 43, 541, 2005
  10. Pupier O, Goetz V, Fiscal R, Chem. Eng. Process., 44(1), 71, 2005
  11. Yang XD, Zheng QR, Gu AZ, Lu XS, Appl. Therm. Eng., 25, 591, 2005
  12. Walton KS, Cavalcante Jr CL, LeVan MD, J. Chem. Eng., 23, 555, 2006
  13. Azevedo DCS, Araujo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL, Micropor. Mesopor. Mater., 100, 361, 2007
  14. Ridha FN, Yunus RM, Rashid M, Ismail AF, Exp. Therm. Fluid. Sci., 32, 14, 2007
  15. Ridha FN, Yunus RM, Rashid M, Ismail AF, Fuel Process. Technol., 88(4), 349, 2007
  16. Ridha FN, Yunus RM, Rashid M, Ismail AF, Appl. Therm. Eng., 27, 55, 2007
  17. Najibi H, Chapoy A, Tohidi B, Fuel, 87(1), 7, 2008
  18. Hirata SC, Couto P, Lara LG, Cotta RM, Int. J. Therm. Sci., 48, 1176, 2009
  19. Saez A, Toledo M, Appl. Therm. Eng., 29, 2617, 2009
  20. Santos JC, Marcondes F, Gurgel JM, Appl. Therm. Eng., 29, 2365, 2009
  21. da Silva MJM, Sphaier LA, Appl. Energy, 87(5), 1572, 2010
  22. de Joode J, Ozdemir O, Energy Policy, 38(10), 5817, 2010
  23. Zhou W, Chem. Rec., 10, 200, 2010
  24. Ejarque JM, Energy Econ., 33, 44, 2011
  25. Jurumenha DS, Sphaier LA, Appl. Therm. Eng., 31, 2458, 2011
  26. Rahman KA, Loh WS, Chakraborty A, Saha BB, Chun WG, Ng KC, Appl. Therm. Eng., 31, 1630, 2011
  27. Rios RB, Bastos-Neto M, Amora MR, Torres AEB, Azevedo DCS, Cavalcante CL, Fuel, 90(1), 113, 2011
  28. Sacsa Diaz RP, Sphaier LA, Int. J. Therm. Sci., 50, 599, 2011
  29. Kim NJ, Lee JH, Cho YS, Chun W, Energy, 35(6), 2717, 2010
  30. Lang X, Fan S, Wang Y, J. Nat. Gas. Chem., 19, 203, 2010
  31. Holman JP, Heat transfer, Tenth Ed., McGraw Hill Higher Education, New York, 2009
  32. Goodling JS, Vachon RI, Stelpflug WS, Ying SJ, Khader MS, Powder Technol., 35, 23, 1983