Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1985-1993, 2014
Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3
Ru/κ-Al2O3 catalysts with different Ru dispersions were prepared by controlling the pretreatment conditions, and were applied to selective CO oxidation in H2. The prepared catalysts were characterized by N2 physisorption, transmission electron microscopy, temperature-programmed oxidation, CO chemisorption, and O2 chemisorption. The Ru dispersion decreased with increasing reduction and oxidation temperature of Ru/κ-Al2O3. The turnover frequency for CO oxidation in H2 increased as the Ru particle size increased from 2.2 to 3.6 nm, whereas the apparent activation energy decreased as the Ru particle size increased from 2.2 to 3.4 nm for 1% Ru/κ-Al2O3. However, larger Ru particles were not always favorable for the selective CO oxidation in H2 because H2 oxidation was also promoted by these catalysts. In the case of the 1 wt% Ru/κ-Al2O3 catalyst, Ru nanoparticles of approximately 3 nm appeared to be optimal for the selective CO oxidation in H2 on the basis that they provided the widest temperature window, resulting in complete removal of CO even in the presence of H2O and CO2.
[References]
  1. Song CS, Catal. Today, 77(1-2), 17, 2002
  2. Park ED, Lee D, Lee HC, Catal. Today, 139, 280, 2009
  3. Liu K, Wang A, Zhang T, ACS Catal., 2, 1165, 2012
  4. Avgouropoulos G, Ioannides T, Matralis H, Appl. Catal. B: Environ., 56(1-2), 87, 2005
  5. Qiao BT, Wang AQ, Lin J, Li L, Su DS, Zhang T, Appl. Catal. B: Environ., 105(1-2), 103, 2011
  6. Zhao ZK, Jin RH, Bao T, Lin XL, Wang GR, Appl. Catal. B: Environ., 110, 154, 2011
  7. Zhang QH, Liu XH, Fan WQ, Wang Y, Appl. Catal. B: Environ., 102(1-2), 207, 2011
  8. Park JE, Park ED, Catal. Lett., 144(4), 607, 2014
  9. Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S, Catal. Today, 116(3), 377, 2006
  10. Oh SH, Sinkevitch RM, J. Catal., 142, 254, 1993
  11. Kim YH, Park ED, Lee HC, Lee D, Lee KH, Catal. Today, 146, 253, 2009
  12. Xu GW, Zhang ZG, J. Power Sources, 157(1), 64, 2006
  13. Worner A, Friedrich C, Tamme R, Appl. Catal. A: Gen., 245(1), 1, 2003
  14. Chin SY, Alexeev OS, Amiridis MD, Appl. Catal. A: Gen., 286(2), 157, 2005
  15. Echigo M, Tabata T, Appl. Catal. A: Gen., 251(1), 157, 2003
  16. Han YF, Kinne M, Behm RJ, Appl. Catal. B: Environ., 52(2), 123, 2004
  17. Kim YH, Park ED, Lee HC, Lee D, Appl. Catal. A: Gen., 366(2), 363, 2009
  18. Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41, 2010
  19. Kim YH, Yim SD, Park ED, Catal. Today, 185(1), 143, 2012
  20. Rosso I, Antonini M, Galletti C, Saracco G, Specchia V, Top. Catal., 30, 475, 2004
  21. Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA, Nano Lett., 10, 2709, 2010
  22. Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY, Nano Lett., 12, 5761, 2012
  23. Kim YH, Park JE, Lee HC, Choi SH, Park ED, Appl. Catal. B: Environ., 127, 129, 2012
  24. Kipnis M, Volnina E, Appl. Catal. B: Environ., 98(3-4), 193, 2010
  25. Han YF, Kahlich MJ, Kinne M, Behm RJ, Phys. Chem. Chem. Phys., 4, 389, 2004
  26. Tada S, Kikuchi R, Urasaki K, Satokawa S, Appl. Catal. A: Gen., 404(1-2), 149, 2011
  27. Atalik B, Uner D, J. Catal., 241(2), 268, 2006
  28. Hershowitz M, Holliday R, Cutlip MB, Kenney CN, J. Catal., 74, 408, 1982
  29. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B, J. Catal., 144, 175, 1993
  30. Haruta M, J. New Mater. Electrochem. Syst., 7, 163, 2004
  31. Gao F, Goodman DW, Phys. Chem. Chem. Phys., 14, 6688, 2012
  32. Over H, Chem. Rev., 112(6), 3356, 2012
  33. Narkhede V, Aβmann J, Muhler M, Z. Phys. Chem., 219, 979, 2005
  34. Kiss JT, Gonzalez RD, J. Phys. Chem., 88, 892, 1984
  35. Aβmann J, Crihan D, Knapp M, Lundgren E, Loffler E, Muhler M, Narkhede V, Over H, Schmid M, Seitsonen AP, Varga P, Angew. Chem. Int. Ed., 44, 917, 2005
  36. Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY, J. Phys. Chem., C, 117, 13108, 2013