Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1973-1979, 2014
The effects of MCM-41’s calcination temperature on the structure and hydrodenitrogenation over NiW catalysts
MCM-41 was calcined at 500, 560, 600 or 650 ℃. It was used as support for NiW catalysts of hydrodenitrogenation (HDN) for quinoline in order to investigate the influences of the MCM-41’s calcination temperature on the structure and the HDN performance of NiW catalysts. The NiW catalysts were characterized by XRD, N2 adsorptiondesorption, XPS, Raman, HRTEM and Py-IR techniques. The results showed that the surface area (SBET), the average pore diameter (Dp) and the pore volume (Vp) of the MCM-41 increased with increase of the MCM-41’s calcination temperature. The high SBET, Dp and Vp were beneficial for the high dispersion of W species, the formation of appropriate nature of W species and acid sites on the catalysts. The HDN activity followed the order of NiW-650≒NiW-600>NiW- 560>NiW-500, while the relative selectivity of HDN pathways was similar for all the catalysts.
[References]
  1. Dominguez-Crespo MA, Torres-Huerta AM, Diaz-Garcia L, Arce-Estrada EM, Ramirez-Meneses E, Fuel Process. Technol., 89(8), 788, 2008
  2. Soni KK, Mouli KC, Dalai AK, Adiaye J, Micropor. Mesopor. Mater., 152, 224, 2012
  3. Peeters E, Cattenot M, Geantet C, Breysse M, Zotin JL, Catal. Today, 133, 299, 2008
  4. Luan YZ, Zhang QM, He DM, Guan J, Liang CH, Asia-Pac. J. Chen. Eng., 4, 704, 2009
  5. Al-Megren HA, Gonzalez-Cortes SL, Xiao T, Green MLH, Appl. Catal. A: Gen., 329, 36, 2007
  6. Cui GQ, Wang JF, Fan HF, Sun XY, Jiang Y, Wang SJ, Liu D, Gui JZ, Fuel Process. Technol., 92(12), 2320, 2011
  7. Li SZ, Lee JS, J. Catal., 173(1), 134, 1998
  8. Clark P, Li W, Oyama ST, J. Catal., 200(1), 140, 2001
  9. Fan Y, Bao XJ, Wang H, Chen CF, Shi G, J. Catal., 245(2), 477, 2007
  10. Guemez MB, Canbra JF, Arias PL, Legarreta JA, Fierro JLG, Fuel, 74, 285, 1995
  11. Duan XP, Li X, Wang AJ, Teng Y, Wang Y, Hu YK, Catal. Today, 149(1-2), 11, 2010
  12. Lu MH, Wang AJ, Li X, Duan XP, Teng Y, Wang Y, Song CS, Hu YK, Energy Fuels, 21(2), 554, 2007
  13. Basha SJS, Vijayan P, Suresh C, Santhanaraj D, Shanthi K, Ind. Eng. Chem. Res., 48(6), 2774, 2009
  14. Basha SJS, Sasirekha NR, Maheswari R, Shanthi K, Appl. Catal. A: Gen., 308, 91, 2006
  15. Khder AS, Hassan HMA, El-Shall MS, Appl. Catal. A: Gen., 411, 77, 2012
  16. Chen CY, Li HX, Davis ME, Microporous Mater., 2, 17, 1993
  17. Keene MTJ, Gougeon RDM, Denoyel R, Harris RK, Rouquerol J, Llewellyn PL, J. Mater. Chem., 9, 2843, 1999
  18. Vetrivel S, Pandurangan A, J. Mol. Catal. A-Chem., 227(1-2), 269, 2005
  19. Kraleva E, Saladino ML, Spinella A, Nasillo G, Caponetti E, J. Mater. Sci., 46(22), 7114, 2011
  20. Soni K, Boahene PE, Mouli KC, Dalai AK, Adjaye J, Appl. Catal. A: Gen., 398(1-2), 27, 2011
  21. Vradman L, Landau MV, Kantorovich D, Koltypin Y, Gedaken A, Microporous Mesoporous Mater., 79, 307, 2005
  22. Luo YM, Hou ZY, Li RT, Zheng XM, Microporous Mesoporous, 109, 585, 2008
  23. Vradman L, Landau MV, Herskowitz M, Ezersky V, Talianker M, Nikitenko S, Koltypin Y, Gedanken A, J. Catal., 213(2), 163, 2003
  24. Lee JJ, Kim H, Koh JH, Jo A, Moon SH, Appl. Catal. B: Environ., 58(1-2), 89, 2005
  25. Lawrence SJ, Makovsky LE, Stencel JE, Brown FR, Hercules DM, J. Phys. Chem., 85, 3700, 1981
  26. Chen H, Dai WL, Deng JF, Fan KN, Catal. Lett., 81(1-2), 131, 2002
  27. Kim DS, Ostromecki M, Wachs IE, Catal. Lett., 33(3-4), 209, 1995
  28. Lei ZP, Gao LJ, Shui HF, Chen WL, Wang ZC, Ren SB, Fuel Process. Technol., 92(10), 2055, 2011
  29. Kalita P, Gupta NM, Kumar R, J. Catal., 245(2), 338, 2007
  30. Sursh C, Santhanaraj D, Gurulakshmi M, Deepa G, Selvaraj M, Rekha NRS, Shanthi K, ACS Catal., 2, 127, 2012
  31. Li X, Wang AJ, Sun ZC, Li C, Ren J, Zhao B, Wang Y, Chen YY, Hu YK, Appl. Catal. A: Gen., 254(2), 319, 2003
  32. Jian M, Prins R, J. Catal., 179(1), 18, 1998
  33. Prins R, Jian M, Flechsenhar M, Polyhedron, 16, 3235, 1997
  34. Cocchetto JF, Satterfield CN, Ind. Eng. Chem. Process. Des., 20, 49, 1981