Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1964-1972, 2014
Experimental analysis and development of correlations for gas holdup in high pressure slurry co-current bubble columns
The effect of liquid and gas velocities, solid concentrations, and operating pressure has been studied experimentally in a 15 cm diameter air-water-glass beads bubble column. The superficial gas and liquid velocities varied from 1.0 to 40.00 cm/s and 0 to 16.04 cm/s, respectively, while the solid loading varied from 1 to 9%. The gas holdup in the column was reduced sharply as we switched from batch to co-current mode of operation. At low gas velocity, the effect of liquid velocity was insignificant; while at high gas velocity, increasing liquid velocity decreased the gas holdup. Drift flux approach was applied to quantify the combined effect of liquid and gas velocities over gas holdup. For co-current three phase flows, the gas holdup decreased with increase in solid loading for all pressures. But for batch operations, when solid loading was 5% or more, settling started leading to higher gas holdup. Increasing pressure from atmospheric conditions increased the gas holdup significantly, flattening asymptotically.
[References]
  1. Degaleesan S, Dudukovic M, Pan Y, AIChE J., 47(9), 1913, 2001
  2. Shah YT, Godbole SP, Deckwer WD, AIChE J., 28, 353, 1982
  3. Li H, Prakash A, Ind. Eng. Chem. Res., 36(11), 4688, 1997
  4. Deckwer WD, Schumpe A, Chem. Eng. Sci., 48, 889, 1993
  5. Shah YT, Kulkarni AA, Wieland JH, Carr NL, Chem. Eng. J., 26, 95, 1983
  6. Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH, Chem. Eng. Sci., 52(21-22), 3811, 1997
  7. Lin TJ, Tsuchiya K, Fan LS, AIChE J., 44(3), 545, 1998
  8. Hol PD, Heindel TJ, Ind. Eng. Chem. Res., 44(13), 4778, 2005
  9. Letzel HM, Schouten JC, Krishna R, van den Bleek CM, Chem. Eng. Sci., 54(13-14), 2237, 1999
  10. Tang CZ, Heindel TJ, Chem. Eng. Sci., 61(10), 3299, 2006
  11. Tang CZ, Heindel TJ, Chem. Eng. Sci., 59(3), 623, 2004
  12. Kara S, Kelkar BG, Shah YT, Carr NL, Ind. Eng. Chem. Pro. Des. Dev., 21, 584, 1982
  13. Khare AS, Joshi JB, Chem. Eng. J., 44, 11, 1990
  14. Kelkar BG, Shah YT, Carr NL, Ind. and Eng. Chem. Pro. Des. and Dev., 23, 308, 1984
  15. Deswart JW, Vanvliet RE, Krishna R, Chem. Eng. Sci., 51(20), 4619, 1996
  16. Fan LS, Yang GQ, Lee DJ, Tsuchiya K, Luo X, Chem. Eng. Sci., 54(21), 4681, 1999
  17. Krishna R, Ellenberger J, Maretto C, Int. Commun. Heat Mass Trans., 26, 467, 1999
  18. Banisi S, Finch JA, Laplante AR, Weber ME, Chem. Eng. Sci., 50(14), 2329, 1995
  19. Mena PC, Ruzicka MC, Rocha FA, Teixeira JA, Drahos J, Chem. Eng. Sci., 60(22), 6013, 2005
  20. Tsuchiya K, Furumoto A, Fan LS, Zhang JP, Chem. Eng. Sci., 52(18), 3053, 1997
  21. Luo X, Zhang J, Tsuchiya K, Fan LS, Chem. Eng. Sci., 52(21-22), 3693, 1997
  22. Gandhi B, Prakash A, Bergougnou MA, Powder Technol., 103(2), 80, 1999
  23. Su XF, Heindel TJ, Can. J. Chem. Eng., 81(3-4), 412, 2003
  24. Krishna R, Deswart JW, Ellenberger J, Martina GB, Maretto C, AIChE J., 43(2), 311, 1997
  25. Kumar S, Munshi P, Khanna A, Procedia Engineering, 42, 782, 2012
  26. Oyevaar MH, Bos R, Westerterp KR, Chem. Eng. Sci., 46, 1217, 1992
  27. Letzel MH, AIChE J., 44(10), 2333, 1998
  28. Li Y, Zhang JP, Fan LS, Chem. Eng. Sci., 55(20), 4597, 2000
  29. Kemoun A, Ong BC, Gupta P, Al-Dahhan MH, Dudukovic MP, Int. J. Multiph. Flow, 27(5), 929, 2001
  30. Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 127, 69, 2007
  31. Zuber N, Findlay JA, Int. J. Heat Transfer, 87, 453, 1965
  32. Wallis GB One-dimensional two-phase flow, McGraw-Hill, NY, USA, 1969
  33. Nacef S, Poncin S, Bouguettoucha A, Wild G, Chem. Eng. Sci., 62(24), 7530, 2007
  34. Tang CZ, Heindel TJ, Int. J. Multiph. Flow, 32(7), 850, 2006
  35. Clark NN, Egmond JWV, Nebiolo EP, Int. J. Multiphase Flow, 16, 261, 1990
  36. Inga JR, Morsi BI, Energy Fuels, 10(3), 566, 1996
  37. Deckwer WD, John Wiley and Sons, NY, 1992
  38. Fox JM, Catal. Lett., 7, 281, 1990
  39. Kumar S, Munshi P, Khanna A, Procedia Engineering, 42, 842, 2012
  40. Kumar S, Srinivasulu N, Munshi P, Khanna A, Can. J. Chem. Eng., 91(3), 516, 2013
  41. Merchuk JC, Stein Y, AIChE J., 27, 377, 1981
  42. Mendelson HD, AIChE J., 13, 250, 1967
  43. Ranade VV, Computational flow modeling for chemical reactor engineering, Academic Press, USA, 2002
  44. Yoo DH, Tsuge H, Terasaka K, Mizutani K, Chem. Eng. Sci., 52(21-22), 3701, 1997
  45. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411, 2000
  46. Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54(21), 4887, 1999
  47. Hillmer G, Weismantel L, Hofmann H, Chem. Eng. Sci., 49(6), 837, 1994