Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1954-1963, 2014
Low Reynolds number flow of power-law fluids over two square cylinders in tandem
The governing partial differential equations have been solved numerically for the 2-D and steady powerlaw fluid flow over two square cylinders in tandem arrangement. Extensive numerical results spanning wide ranges of the governing parameters as Reynolds number (0.1≤Re≤40), power-law index (0.2≤n≤1) and inter-cylinder spacing (2≤L/d≤6) are presented herein; limited results for L/d=24 are also obtained to approach the single cylinder behavior. The detailed flow visualization is done by means of the streamline and vorticity contours in the vicinity of two cylinders. The global characteristics are analyzed in terms of the surface pressure distribution and pressure drag coefficient. The drag coefficient shows the classical inverse dependence on the Reynolds number irrespective of the value of the powerlaw index; the drag on the upstream cylinder is always greater than that for the downstream cylinder.
[References]
  1. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric liquids, Vol. 1: Fluid Dynamics, 2nd Ed., Wiley, New York, 1987
  2. Chhabra RP, Bubbles, drops and particles in non-newtonian fluids, 2nd Ed., CRC Press, Boca Raton, FL, 2006
  3. Chhabra RP, Richardson JF, Non-newtonian flow and applied rheology, 2nd Ed., Butterworth-Heinemann, Oxford, 2008
  4. Chhabra RP, Advances in Heat Transfer, 43, 289, 2011
  5. Kabir MA, Khan MMK, Rasul MG, Chem. Eng. Commun., 199(6), 689, 2012
  6. Hesselgreaves JE, Compact heat exchangers, Pergamon Press, Oxford, 2001
  7. Kakac S, Liu H, Heat exchangers: Selection, rating and thermal design, 2nd Ed., CRC Press, Boca Raton, FL, 2002
  8. Zdravkovich MM, Flow around circular cylinders, Vol. 1: Fundamentals, Oxford University Press, New York, 1997
  9. Zdravkovich MM, Flow around circular cylinders, Vol 2: Applications, Oxford University Press, New York, 2003
  10. Juncu G, Int. J. Heat Mass Transf., 50(19-20), 3788, 2007
  11. Patil RC, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 47(5), 1660, 2008
  12. Dhiman AK, Chhabra RP, Eswaran V, Chem. Eng. Res. Des., 84(A4), 300, 2006
  13. Dhiman AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 148(1-3), 141, 2008
  14. Dhiman AK, Int. J. Therm. Sci., 48, 1552, 2009
  15. Bouaziz M, Kessentini S, Turki S, Int. J. Heat Mass Transf., 53(23-24), 5420, 2010
  16. Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 160(2-3), 157, 2009
  17. Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 165(13-14), 752, 2010
  18. Rao PK, Sahu AK, Chhabra RP, Int. J. Heat Mass Transf., 54(1-3), 390, 2011
  19. Patnana VK, Bharti RP, Chhabra RP, Chem. Eng. Sci., 64(12), 2978, 2009
  20. Patnana VK, Bharti RP, Chhabra RP, Int. J. Heat Mass Transf., 53(19-20), 4152, 2010
  21. Dhiman A, Shyam R, ISRN Mech. Eng., 2011, 1, 2011
  22. Rao MK, Sahu AK, Chhabra RP, Polym. Eng. Sci., 51(10), 2044, 2011
  23. Bijjam S, Dhiman AK, Chem. Eng. Commun., 199(6), 767, 2012
  24. Rao PK, Sahu AK, Chhabra RP, Ind. Eng. Chem. Res., 49(14), 6649, 2010
  25. Prhashanna A, Sahu AK, Chhabra RP, Int. J. Therm. Sci., 50, 2027, 2011
  26. Chandra A, Chhabra RP, Int. J. Heat Mass Transf., 54(13-14), 2734, 2011
  27. Chaitanya NSK, Dhiman AK, Int. J. Heat Mass Transf., 55(21-22), 5941, 2012
  28. Nejat A, Abdollahi V, Vahidkhah K, J. Non-Newton. Fluid Mech., 166(12-13), 689, 2011
  29. Nejat A, Mirzakhalili E, Aliakbari A, Niasar MSF, Vahidkhah K, J. Non-Newton. Fluid Mech., 171, 67, 2012
  30. Dhiman AK, Kumar S, Korean J. Chem. Eng., 30(1), 33, 2013
  31. Sakamoto H, Haniu H, J. Wind Eng. Ind. Aerod., 31, 41, 1988
  32. Suzuki H, Inoue Y, Nishimura T, Fukutani K, Suzuki K, Int. J. Heat Fluid Flow, 14, 2, 1993
  33. Luo SC, Li LL, Shah DA, J. Wind Eng. Ind. Aerod., 79, 79, 1999
  34. Liu CH, Chen JM, J. Wind Eng. Ind. Aerod., 90, 1019, 2002
  35. Valencia A, Heat Mass Transfer, 33, 465, 1998
  36. Lankadasu A, Vengadesan S, Int. J. Numer. Methods Fluids, 57, 1005, 2008
  37. Rosales JL, Ortega A, Humphrey JAC, Int. J. Heat Mass Transf., 44(3), 587, 2001
  38. Sohankar A, Etminan A, Int. J. Numer. Methods Fluids, 60, 733, 2009
  39. Chatterjee D, Biswas G, Numer. Heat Transfer A, 59, 437, 2011
  40. Shyam R, Chhabra RP, Int. J. Heat Mass Transfer, 57, 742, 2012
  41. Ehsan I, Mohammad S, Reza NM, Ali J, Tashnizi ES, J. Fluids Engineering (ASME), 135, 061101-1, 2013
  42. Nikfarjam F, Sohankar A, Acta Mech., 224, 1115, 2013
  43. Kabir MA, Khan MMK, Bhuiyan MA, KSME International J., 17, 879, 2003
  44. Ghia U, Ghia KN, Shin CT, J. Comput. Phys., 48, 387, 1982
  45. Bell BC, Surana KS, Int. J. Numer. Methods Fluids, 18, 127, 1994
  46. Neofytou P, Adv. Eng. Soft., 36, 664, 2005
  47. Tatsuno M, Fluid Dyn. Res., 5, 49, 1989