Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1943-1953, 2014
Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring
The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.
[References]
  1. Bo CM, Qiao X, Zhang GM, Bai YJ, Zhang S, J. Process Control, 20(10), 1133, 2010
  2. Chiang LH, Russell E, Braatz RD, Fault detection and diagnosis in industrial systems, Springer Verlag, 2001
  3. Lakshminarayanan S, Shah SL, Nandakumar K, AIChE J., 42, 2307, 2004
  4. Kim MH, Yoo CK, Korean J. Chem. Eng., 25(5), 947, 2008
  5. Wang X, Kruger U, Lennox B, Control Eng. Practice, 11, 613, 2003
  6. Han K, Park KJ, Chae H, Yoon ES, Korean J. Chem. Eng., 25(1), 13, 2008
  7. Bakshi BR, AIChE J., 44(7), 1596, 1998
  8. Liang J, Qian JX, Chin. J. Chem. Eng., 11(2), 191, 2003
  9. Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H, AIChE J., 49(4), 969, 2003
  10. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467, 2004
  11. Lee JM, Qin SJ, Lee IB, AIChE J., 52(10), 3501, 2006
  12. Yu J, Qin SJ, AIChE J., 54(7), 1811, 2008
  13. Yu J, Chem. Eng. Sci., 68(1), 506, 2012
  14. Rengaswamy R, Venkatasubramanian V, Comput. Chem. Eng., 24(2-7), 431, 2000
  15. Aradhye HB, Bakshi BR, Davis JF, Ahalt SC, AIChE J., 50(10), 2455, 2004
  16. Mehranbod N, Soroush M, Piovoso M, Ogunnaike BA, AIChE J., 49(7), 1787, 2003
  17. Chiang LH, Kotanchek ME, Kordon AK, Comput. Chem. Eng., 28(8), 1389, 2004
  18. He QP, Qin SJ, Wang J, AIChE J., 51(2), 555, 2005
  19. Zhang YW, Chem. Eng. Sci., 64(5), 801, 2009
  20. Yelamos I, Escudero G, Graells M, Puigjaner L, Comput. Chem. Eng., 33(1), 244, 2009
  21. Vincent P, Bengio Y, K-local hyperplane and convex distance nearest neighbor algorithms, in Advances in Neural Information Proc. Systems, MIT Press, Cambridge, 1, 985, 2002
  22. Pasluosta CF, Dua P, Lukiw WJ, Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in Alzheimer’s disease, in: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, 33, 5559, 2011
  23. Xu J, Yang J, Lai ZH, Information Sciences, 232, 11, 2013
  24. Mao J, Jain AK, IEEE Trans. Neural Networks, 7, 16, 1996
  25. Archambeau C, Vrins F, Verleysen M, Flexible and robust Bayesian classication by nite mixture models, in European Symp. on Articial Neural Networks, Bruges, Belgium, 75, 2004
  26. Zhang T, Tao D, Li X, Yang J, IEEE Trans. Knowledge and Data Eng., 21, 1299, 2009
  27. Lam B, Yan H, Cluster validity for DNA microarray data using a geometrical index, in 4th International Conference on Machine Learning and Cybernetics, 6, 3333, 2005
  28. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245, 1993
  29. Ricker NL, J. Process Control, 6(4), 205, 1996
  30. Ricker NL, Comput. Chem. Eng., 19(9), 949, 1995