Issue
Korean Journal of Chemical Engineering,
Vol.31, No.11, 1935-1942, 2014
Improved fault detection in nonlinear chemical processes using WKPCA-SVDD
Conventional kernel principal component analysis (KPCA) does not always perform well for nonlinear process monitoring because the beneficial information for fault detection may be submerged under the retained kernel principal components (KPCs). To overcome this deficiency, an adaptively weighted KPCA integrated with support vector data description (WKPCA-SVDD) monitoring method is proposed. In WKPCA-SVDD, the importance of each KPC is evaluated online by the change rate of T2 statistic and then distinguished weighting values are set on the KPCs. The behaviors of all KPCs are comprehensively evaluated by the SVDD technique. Since the beneficial information is highlighted, the monitoring performance of the statistic in the dominant subspace can be improved. The proposed WKPCA-SVDD is applied to both a numerical process and the complicated Tennessee Eastman benchmark process. Monitoring results have indicated the efficiency of the WKPCA-SVDD method.
[References]
  1. Aguado D, Ferrer A, Ferrer J, Seco A, Chemom. Intell. Lab. Syst., 85, 82, 2007
  2. AlGhazzawi A, Lennox B, Control Eng. Pract., 16, 294, 2008
  3. Chiang LH, Russell EL, Braatz RD, Chemom. Intell. Lab. Syst., 50, 243, 2000
  4. Lee JM, Yoo CK, Choi SW, Vanrolleghem PA, Lee IB, Chem. Eng. Sci., 59(1), 223, 2004
  5. Lee JM, Yoo CK, Lee IB, J. Process Control, 14(5), 467, 2004
  6. Odiowei P, Cao Y, Chemom. Intell. Lab. Syst., 103, 59, 2010
  7. Tomba E, Facco P, Bezzo F, Garcia-Munoz S, Barolo M, Chemom. Intell. Lab. Syst., 116, 67, 2012
  8. Han K, Park KJ, Chae H, Yoon ES, Korean J. Chem. Eng., 25(1), 13, 2008
  9. Kim MH, Yoo CK, Korean J. Chem. Eng., 25(5), 947, 2008
  10. Jiang QC, Yan XF, AIChE J., 60(3), 949, 2014
  11. Chiang LH, Russell E, Braatz RD, Fault detection and diagnosis in industrial systems, Springer Verlag, London, 2001
  12. Jiang Q, Yan X, Chemom. Intell. Lab. Syst., 119, 11, 2012
  13. Kresta JV, Macgregor JF, Marlin TE, Can. J. Chem. Eng., 69, 35, 2009
  14. Jiang QC, Yan XF, Zhao WX, Ind. Eng. Chem. Res., 52(4), 1635, 2013
  15. Chen Q, Kruger U, Meronk M, Leung A, Control Eng. Pract., 12, 745, 2004
  16. Jolliffe IT, Applied Statistics, 300, 1982
  17. Wang HQ, Song ZH, Li P, Ind. Eng. Chem. Res., 41(10), 2455, 2002
  18. Wold S, Chemom. Intell. Lab. Syst., 23, 149, 1994
  19. He XB, Yang YP, Yang YH, Chemom. Intell. Lab. Syst., 93, 27, 2008
  20. Ferreira DL, Kittiwachana S, Fido LA, Thompson DR, Escott RE, Brereton RG, Analyst, 134, 1571, 2009
  21. Jiang Q, Yan X, Chemom. Intell. Lab. Syst., 127, 121, 2013
  22. Alzate C, Suykens JA, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32, 335, 2010
  23. Jiang Q, Yan X, Lv Z, Guo M, Korean J. Chem. Eng., 30, 1181, 2013
  24. Kramer MA, AIChE J., 37, 233, 1991
  25. Dong D, Mcavoy TJ, Comput. Chem. Eng., 20(1), 65, 1996
  26. Hiden HG, Willis MJ, Tham MT, Montague GA, Comput. Chem. Eng., 23(3), 413, 1999
  27. Scholkopf B, Smola A, Muller KR, Neural Computation, 10, 1299, 1998
  28. Cui P, Li J, Wang G, Expert Systems with Applications, 34, 1210, 2008
  29. Ge Z, Song Z, Control Eng. Pract., 16, 1427, 2008
  30. Ge ZQ, Yang CJ, Song ZH, Chem. Eng. Sci., 64(9), 2245, 2009
  31. Nguyen VH, Golinval JC, Eng. Struct., 32, 3683, 2010
  32. Ge Z, Song Z, Expert Syst. Appl., 38, 9821, 2011
  33. Yang Y, Lee JM, J. Process Control, 23(6), 852, 2013
  34. Ge ZQ, Gao FR, Song ZH, J. Process Control, 21(6), 949, 2011
  35. Tax DM, Duin RP, Machine Learning, 54, 45, 2004
  36. Downs JJ, Vogel EF, Comput. Chem. Eng., 17, 245, 1993
  37. Lyman PR, Georgakis C, Comput. Chem. Eng., 19(3), 321, 1995