Issue
Korean Journal of Chemical Engineering,
Vol.31, No.8, 1349-1361, 2014
Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method
Numerical simulations have been carried out to investigate the formation and motion of single bubble in liquids using volume-of-fluid (VOF) method using the software platform of FLUENT 6.3. Transient conservation mass and momentum equations with considering the effects of surface tension and gravitational force were solved by the pressure implicit splitting operator (PISO) algorithm to simulate the behavior of gas.liquid interface movements in the VOF method. The simulation results of bubble formation and characteristics were in reasonable agreement with experimental observations and available literature results. Effects of fluid physical properties, operation conditions such as orifice diameter on bubble behavior, detachment time, bubble formation frequency and bubble diameter were numerically studied. The simulations showed that bubble size and bubble detachment times are linear functions of surface tension and decrease exponentially with the increase in liquid density. In contrast, only a small influence of the fluid viscosity on bubble size and detachment time was observed. Bubble collapse at a free surface simulation with VOF method was also investigated.
[References]
  1. Kantarci N, Borak F, Ulgen KO, Process Biochem., 40, 2263, 2005
  2. Li H, Prakash A, Chem. Eng. Sci., 54(21), 5265, 1999
  3. Li H, Prakash A, Powder Technol., 113(1-2), 158, 2000
  4. Schafer R, Marten C, Eigenberger G, Exp. Therm. Fluid Sci., 26, 595, 2002
  5. Buwa VV, Ranade VV, Chem. Eng. Sci., 57(22-23), 4715, 2002
  6. Michele V, Hempel DC, Chem. Eng. Sci., 57(11), 1899, 2002
  7. Dhotre MT, Ekambara K, Joshi JB, Exp. Therm. Fluid Sci., 28, 407, 2004
  8. Thorat BN, Joshi JB, Exp. Therm. Fluid Sci., 28, 423, 2004
  9. Yang N, Chen JH, Zhao H, Ge W, Li JH, Chem. Eng. Sci., 62(24), 6978, 2007
  10. Yang N, Chen JH, Ge W, Li JH, Chem. Eng. Sci., 65(1), 517, 2010
  11. Yang N, Wu ZY, Chen JH, Wang YH, Li JH, Chem. Eng. Sci., 66(14), 3212, 2011
  12. Ma D, Liu M, Zu Y, Tang C, Chem. Eng. Sci., 72, 61, 2012
  13. Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3623, 1997
  14. Krishna R, Van Baten JM, Chem. Eng. Res. Des., 79(3), 283, 2001
  15. Yang GQ, Du B, Fan LS, Chem. Eng. Sci., 62(1-2), 2, 2007
  16. Hirt CW, Nichols BD, J. Comput. Phys., 39, 201, 1981
  17. Welch SWJ, Wilson J, J. Comput. Phys., 160, 662, 2000
  18. Wohak MG, Beer H, Numerical Heat Transfer, Part A, 33, 561, 1998
  19. Davidson MR, Rudman M, Numerical Heat Transfer, Part B, 41, 291, 2002
  20. Harvie DJE, Fletcher DF, Int. J. Heat Mass Transf., 44(14), 2633, 2001
  21. Harvie DJE, Fletcher DF, Int. J. Heat Mass Transf., 44(14), 2643, 2001
  22. Nikolopoulos N, Theodorakakos A, Bergeles G, Int. J. Heat Mass Transf., 50(1-2), 303, 2007
  23. Strotos G, Gavaises M, Theodorakakos A, Bergeles G, Int. J. Heat Mass Transf., 51(7-8), 1516, 2008
  24. Yeoh GH, Tu J, Computational Techniques for Multiphase Flows - Basics and Applications, Elsevier Ltd., 462, 2010
  25. Ashgriz N, Poo JY, J. Comput. Phys., 93, 449, 1991
  26. Youngs DL, Time-dependent multi-material flow with large fluid distortion, In Morton KW & Baines MJ (Eds.), Numerical methods for fluid dynamics, London: Academic Press, 273, 1982
  27. Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335, 1992
  28. Klostermann J, Schaake K, Schwarze R, Int. J. Numerical Methods in Fluids, DOI:10.1002/fld.3692.
  29. Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3759, 1997
  30. Yujie Z, Mingyan L, Yonggui X, Can T, Chem. Eng. Sci., 73, 55, 2012
  31. Bhaga D, Weber ME, J. Fluid Mech., 105, 61, 1981
  32. Liger-Belair G, Seon T, Antkowiak A, Bubble Science, Engineering and Technology, 4, 21, 2012