Issue
Korean Journal of Chemical Engineering,
Vol.31, No.7, 1211-1218, 2014
Biosorption potential of the mediterranean plant (Posidonia oceanica) for the removal of Cu2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis
The biosorption characteristics of copper(II) ions using Posidonia oceanica biomass were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, biosorbent dosage and temperature were studied. The equilibrium data were applied to the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir model fitted very well the equilibrium data, and the maximum uptake of Cu(II) by Posidonia oceanica was found to be 76.92 mg/g. The mean free energy E (10.78 kJ/mol) from the D-R isotherm indicated a chemical ion-exchange mechanism. Kinetic results showed that the pseudo-second-order kinetic model was well fitted to the experimental data. Thermodynamic parameters depicted the exothermic nature of biosorption and the process was feasible and spontaneous. The results of FTIR (Fourier-transform infrared spectroscopy) revealed that carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Cu(II) ions.
[References]
  1. Peng QQ, Liu YG, Zeng GM, Xu WH, Yang CP, Zhang JJ, J. Hazard. Mater., 177(1-3), 676, 2010
  2. Rao CS, Environmental pollution control engineering, Wiley Eastern, New Delhi, 1992
  3. Sengil IA, Ozacar M, Turkmenler H, J. Hazard. Mater., 162, 1045, 2009
  4. Ali I, Gupta VK, Nat. Protoc., 1, 2661, 2007
  5. Saxena S, D’Souza SF, Environ. Int., 32, 199, 2006
  6. Wang JL, Chen C, Biotechnol. Adv., 27, 195, 2009
  7. Lacher C, Smith RW, Miner. Eng., 15, 187, 2002
  8. Boudouresque CF, Bernard G, Bonhomme P, Charbonel E, Divacco G, Meinesz A, Peregent G, Pergent-Martini C, Ruitton S, Tunesi L, Preservation et conservation des herbiers a Posidonia oceanica, RAMOGE Pub., 2006
  9. Cocozza C, Parente A, Zaccone C, Mininni C, Santamaria P, Miano T, Biomass Bioenerg., 35(2), 799, 2011
  10. Rahaman MS, Basu A, Islam MR, Bioresour. Technol., 99(8), 2815, 2008
  11. Feng NC, Guo XY, Liang S, J. Hazard. Mater., 164(2-3), 1286, 2009
  12. Aydin H, Bulut Y, Yerlikaya C, J. Environ. Manage., 87, 37, 2008
  13. Kumar YP, King P, Prasad VSRK, Chem. Eng. J., 129(1-3), 161, 2007
  14. El-Ashtoukhy ESZ, Amin NK, Abdelwahab O, Desalination, 223(1-3), 162, 2008
  15. Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN, J. Hazard. Mater., 122(1-2), 161, 2005
  16. Dekhil AB, Hannachi Y, Ghorbel A, Boubaker T, Chem. Ecol., 27, 221, 2011
  17. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  18. Freundlich H, Phys. Chem. Soc. Phys. Chem. Soc., 40, 1361, 1906
  19. Malik UR, Hasany SM, Subhani MS, Talanta, 66, 166, 2005
  20. Dubinin MM, Zaverina ED, Radushkevich LV, Z. Fiz. Khim., 21, 1351, 1947
  21. Helfferich F, Ion exchange, McGraw Hill, NewYork, 1962
  22. Lagergren S, Hand Lingar., 24, 1, 1898
  23. Ho YS, Mckay G, Wase DJ, Foster CF, Adsorp. Sci. Technol., 18, 639, 2000
  24. Al-Anber ZA, Matouq MAD, J. Hazard. Mater., 151(1), 194, 2008
  25. Boparai HK, Joseph M, O'Carroll DM, J. Hazard. Mater., 186(1), 458, 2011
  26. Sawalha MF, Peralta-Videa JR, Romero-Gonzalez J, Gardea-Torresdey JL, J. Colloid Interface Sci., 300(1), 100, 2006
  27. Aravindhan R, Rao JR, Nair BU, J. Hazard. Mater., 142(1-2), 68, 2007
  28. Smith JM, Chemical engineering kinetic, 3rd Ed., McGraw-Hill, Singapore, 1998
  29. Aksu Z, Isoglu IA, Process. Biochem., 40, 3031, 2005
  30. Kellner R, Mermet JM, Otto M, Analytical chemistry, Wiley-VCH Verlag GmbH Press, New York, 1998
  31. Amarasinghe BMWPK, Williams RA, Chem. Eng. J., 132(1-3), 299, 2007
  32. Zhu CS, Wang LP, Chen WB, J. Hazard. Mater., 168(2-3), 739, 2009
  33. Seo H, Lee M, Wang S, Environ. Eng. Res., 18, 45, 2013
  34. Njikam E, Schiewer S, J. Hazard. Mater., 213-214, 242, 2012