Issue
Korean Journal of Chemical Engineering,
Vol.31, No.5, 754-771, 2014
Power-law shear-thinning flow around a heated square bluff body under aiding buoyancy at low Reynolds numbers
Power-law shear-thinning fluid flow over a heated square bluff body is numerically investigated under aiding buoyancy mixed convection at low Reynolds numbers. Semi-explicit finite volume code is developed to solve the governing equations along with the appropriate boundary conditions. Both aiding buoyancy and shear-thinning natures are found to augment the heat transfer rate from the surface of the long square bar. In aiding buoyancy, the total drag coefficient is found to be more for the square cylinder than that of the circular cylinder, whereas the average cylinder Nusselt number for the square cylinder is found to be lower than the circular one on equal side/diameter basis. Maximum augmentation in heat transfer is found to be approximately 20% with respect to forced convection. Finally, a heat transfer correlation is established by using the Colburn heat transfer factor.
[References]
  1. Chhabra RP, Hydrodynamics of non-spherical particles in non-Newtonian fluids, In: Cheremisinoff NP, Cheremisinoff PN (Eds.), Handbook of Applied Polymer Processing Technology, Marcel Dekker, NY, USA (Chapter 1), 1996
  2. Chhabra RP, Heat and mass transfer in rheologically complex systems, In: Siginer D, De Kee D, Chhabra RP (Eds.), Advances in the Rheology and Flow of Non-Newtonian Fluids, Amsterdam (Chapter 39), 1999
  3. Gupta RK, Polymer and composites rheology, second Ed., Marcel Dekker, New York, 2000
  4. Chhabra RP, Bubbles, drops, and particles in non-newtonian fluids, second Ed., CRC Press, Boca Raton, FL, 2006
  5. Chhabra RP, Richardson JF, Non-newtonian flow and applied rheology, 2nd Ed., Butterworth-Heinemann, Oxford, 2008
  6. Sharma N, Dhiman AK, Kumar S, Int. J. Heat Mass Transf., 55(9-10), 2601, 2012
  7. Sharma A, Eswaran V, Num. Heat Transfer. A, 45, 601, 2004
  8. Sharma A, Eswaran V, Int. J. Heat Mass Transf., 48(25-26), 5310, 2005
  9. Chatterjee D, Mondal B, Heat Transf. Eng., 33(12), 1063, 2012
  10. Bhattacharyya S, Mahapatra S, Heat Mass Transfer., 41, 824, 2005
  11. Dhiman AK, Chhabra RP, Eswaran V, Int. Comm. Heat Mass Transfer., 35, 47, 2008
  12. Chatterjee D, Mondal B, Int. J. Heat Mass Transf., 54(25-26), 5262, 2011
  13. Dhiman AK, Anjaiah N, Chhabra RP, Eswaran V, J. Fluids Eng., 129, 506, 2007
  14. Bouaziz M, Kessentini S, Turki S, Int. J. Heat Mass Transf., 53(23-24), 5420, 2010
  15. Paliwal B, Sharma A, Chhabra RP, Eswaran V, Chem. Eng. Sci., 58(23-24), 5315, 2003
  16. Dhiman AK, Chhabra RP, Eswaran V, Chem. Eng. Res. Des., 84(A4), 300, 2006
  17. Dhiman AK, Chhabra RP, Eswaran V, Num. Heat Transfer. A, 52, 185, 2007
  18. Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 160(2-3), 157, 2009
  19. Sahu AK, Chhabra RP, Eswaran V, Num. Heat Transfer. A, 56, 109, 2009
  20. Rao PK, Sahu AK, Chhabra RP, Int. J. Heat Mass Transf., 54(1-3), 390, 2011
  21. Gupta AK, Sharma A, Chhabra RP, Eswaran V, Ind. Eng. Chem. Res., 42(22), 5674, 2003
  22. Dhiman AK, Int. J. Therm. Sci., 48, 1552, 2009
  23. Sahu AK, Chhabra RP, Eswaran V, Num. Heat Transfer. A, 58, 641, 2010
  24. Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 165(13-14), 752, 2010
  25. Soares AA, Ferreira JM, Chhabra RP, Ind. Eng. Chem. Res., 44(15), 5815, 2005
  26. Soares AA, Anacleto J, Caramelo L, Ferreira JM, Chhabra RP, Ind. Eng. Chem. Res., 48(17), 8219, 2009
  27. Bharti RP, Chhabra RP, Eswaran V, Int. J. Heat Mass Transf., 50(5-6), 977, 2007
  28. Patnana VK, Bharti RP, Chhabra RP, Chem. Eng. Sci., 64(12), 2978, 2009
  29. Patnana VK, Bharti RP, Chhabra RP, Int. J. Heat Mass Transf., 53(19-20), 4152, 2010
  30. Srinivas AR, Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 48(21), 9735, 2009
  31. Bharti RP, Chhabra RP, Eswaran V, Chem. Eng. Sci., 62(17), 4729, 2007
  32. Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 46(11), 3820, 2007
  33. Rao MK, Sahu AK, Chhabra RP, Polym. Eng. Sci., 51(10), 2044, 2011
  34. Bijjam S, Dhiman AK, Chem. Eng. Commun., 199(6), 767, 2012
  35. Igarashi T, Int. J. Heat Mass Transfer., 30, 893, 1987
  36. Ahmed GR, Yovanovich MM, Trans. ASME J. Heat Transfer., 119, 70, 1997
  37. Saha AK, Muralidhar K, Biswas G, Exp. Fluids, 29, 553, 2000
  38. Singh SK, Panigrahi PK, Murlidhar K, Exp. Fluids, 43, 101, 2007
  39. Sabiri NE, Chhabra RP, Comiti J, Montillet A, Exp. Therm. Fluid Sci., 39, 167, 2012
  40. Davis RW, Moore EF, Purtell LP, Phys. Fluids, 27, 46, 1984
  41. Suzuki K, Suzuki H, Unsteady heat transfer in a channel obstructed by an immersed body, Annu. Rev. Heat Transfer, C. L. Tien (Ed.), Begell House, New York, 5, 177, 1994
  42. Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 110(2-3), 143, 2003
  43. Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 110(2-3), 177, 2003
  44. Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 121(1), 55, 2004
  45. Dhiman AK, Flow over and heat transfer to power-law fluids across a square cylinder in steady regime: A numerical study, Ph.D. Thesis, Indian Institute of Technology Kanpur, India, 2006
  46. Thompson JF, Warsi ZUA, Mastin CW, Numerical grid generation: Foundations and applications, Elsevier Science, New York, 305, 1985
  47. Sharma A, Eswaran V, A finite volume method, in Muralidhar K, Sundararajan T (Eds.), Computational Fluid Flow and Heat Transfer, Narosa Publishing House, New Delhi, 445, 2003
  48. Rhie CM, Chow WL, AIAA J., 21, 1525, 1983
  49. Dhiman AK, Sharma N, Kumar S, Brazilian J. Chem. Eng., 29, 253, 2012
  50. Ghia U, Ghia KN, Shin CT, J. Comput. Phys., 48, 387, 1982
  51. Dhiman A, Sharma N, Kumar S, Int. J. Sustainable Energy, http://dx.doi.org/10.1080/14786451.2013.764878, 2013
  52. Gandikota G, Amiroudine S, Chatterjee D, Biswas G, Numer. Heat Transfer. Part A, 58, 385, 2010
  53. Chatterjee D, Numer. Heat Transfer. Part A, 61, 800, 2012
  54. Chatterjee D, Mondal B, Comput. Therm. Sci., 4, 23, 2012
  55. Roache PJ, Verication and validation in computational science and engineering, Hermosa Publishers, Albuquerque, New Mexico, 1998