Issue
Korean Journal of Chemical Engineering,
Vol.31, No.3, 503-508, 2014
Fabrication and characterization of NiO nanoparticles by precipitation from aqueous solution
Present work involves synthesis of NiO nanoparticles using chemical homogeneous precipitation (CHP) method as a facile procedure. Ammonia as a complex agent was used in this method. Effects of different types of complexation-precipitation methods on the crystallinity and morphology of nanoparticles were investigated. NiO particles were prepared by direct precipitation method from NiSO4 solution to compare crystallinity and morphology of NiO particles with particles obtained via complexation-precipitation methods. Our major intent was to investigate the effect of complex agent on the crystallization and growth of NiO nanoparticles. Results showed that the best condition for synthesizing spherical NiO shape was using NaOH as decomposing agent, of which the consequence was more uniformity and spherical nanoparticles with a diameter in the range of 40-60 nm. The size of the nickel oxide and nickel hydroxide nanoparticles was estimated by X-ray powder diffraction (XRD) pattern. The chemical structure information of the particles was studied by Fourier transform infrared (FT-IR) spectroscopy. Spherical, elliptical, sheet or flowerlike shapes were detected by field emission scanning electron microscopy (FESEM) analysis. Results showed that by the use of ammonia as complex agent, crystalline state and particles size distribution of NiO nanoparticles improved.
[References]
  1. Moghaddam J, Kolahgar-Azari S, Karimi S, Ind. Eng. Chem. Res., 51(8), 3224, 2012
  2. He Y, Vinodgopal K, Ashokkumar M, Grieser F, Res. Chem. Intermed., 32, 709, 2006
  3. Kassab RM, Jackson KT, El-Kadri OM, El-Kaderi HM, Res. Chem. Intermed., 37, 747, 2011
  4. Adler D, Feinleib JJ, Phys. Rev. B: Condens. Matter, 2, 3112, 1970
  5. Hotovy I, Huran J, Spiess L, Hascik S, Tehacek V, Sens. Actuators, B, 57, 147, 1999
  6. Miller EL, Rocheleau RE, J. Electrochem. Soc., 144(9), 3072, 1997
  7. Wang YP, Zhu JW, Yang XJ, Lu LD, Wang X, Thermochim. Acta, 437(1-2), 106, 2005
  8. Makkus RC, Hemmes K, Wir JHWD, J. Electrochem. Soc., 141, 3429, 1994
  9. Ghosh M, Biswas K, Sundaresan A, Rao CNR, J. Mater. Chem., 16, 106, 2006
  10. Wang X, Ye LJ, Hu P, Yuan FL, Cryst. Growth Des., 7, 2415, 2007
  11. Huang CN, Chen SY, Shen P, J. Phys. Chem. C, 111, 3322, 2007
  12. Zhao B, Ke XK, Bao JH, J. Phys. Chem. C, 113, 14440, 2009
  13. Wu MS, Hsieh HH, Electrochim. Acta, 53(8), 3427, 2008
  14. Sietsma JRA, Meeldijk JD, Breejen JPD, Helder MV, Dillen AJV, Jongh PED, Jong KPD, Angew. Chem. Int. Ed., 46, 4547, 2007
  15. Yang LX, Zhu YJ, Tong H, Liang ZH, Li L, Zhang LJ, J. Solid State Chem., 180, 2095, 2007
  16. Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308, 2003
  17. Wu LL, Wu YS, Wei HY, Shi YC, Hu CX, Mater. Lett., 58, 2700, 2004
  18. Zheng MB, Cao JM, Chen YP, Ma XJ, Deng SG, Tao J, Chem. Lett., 34(8), 1174, 2005
  19. Xing W, Li F, Yan ZF, Cheng HM, Lu GQ, Int. J. Nanosci., 3, 321, 2004
  20. Liu XM, Zhang XG, Fu SY, Mater. Res. Bull., 41(3), 620, 2006
  21. Bai LY, Yuan FL, Hu P, Yan SK, Wang X, Li SH, Mater. Lett., 61, 1698, 2007
  22. Ni X, Zhang Y, Tian D, Zheng H, Wang X, J. Cryst. Growth, 306(2), 418, 2007
  23. Al-Hajry A, Umar A, Vaseem M, Al-Assiri MS, Superlattices Microstruct., 44, 216, 2008
  24. Zhu LP, Liao GH, Yang Y, Zhao HM, Wang JG, Nanoscale Res. Lett., 4, 550, 2009
  25. Wang HZ, Qian YT, Cryst. Res. Technol., 45, 545, 2010
  26. Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L, Thin Solid Films, 418(1), 9, 2002
  27. Kim TY, Kim JY, Lee SH, Shim HW, Lee SH, Su EK, Nahm KS, Synthetic Met., 144, 61, 2004
  28. Li F, Chen HY, Wang CM, Hu KA, J. Electroanal. Chem., 531(1), 53, 2002
  29. Needham SA, Wang GX, Liu HK, J. Power Sources, 159(1), 254, 2006
  30. Gondal MA, Sayeed MN, Seddigi Z, J. Hazard. Mater., 155(1-2), 83, 2008
  31. Cossins BP, Foucher S, Edge CM, Essex JW, J. Phys. Chem. B, 113(16), 5508, 2009
  32. Yang Q, Sha J, Maa X, Yang D, Mater. Lett., 59, 1967, 2005
  33. Salavati-Niasari M, Mir N, Davar F, J. Alloy. Compd., 493, 163, 2010
  34. Plashnitsa VV, Gupta V, Miura N, Electrochim. Acta, 65, 6941, 2010
  35. Deng XY, Chen Z, Mater. Lett., 58, 276, 2004
  36. Kamath PV, Subbanna GN, J. Appl. Electrochem., 22, 478, 1992
  37. Wei Z, Qiao H, Yang H, Zhang C, Yan X, J. Alloy. Compd., 479, 855, 2009
  38. Cullity BD, Elements of X-ray diffraction, First Ed., Addison Wesley, Massachusetts, 1956
  39. Paola AD, Garcia-Lopez E, Marci G, Palmisano L, J. Hazard. Mater., 211-212, 3, 2012
  40. Song QS, Li YY, Chan SLI, J. Appl. Electrochem., 35, 157, 2005
  41. Xu CK, Hong KQ, Liu S, Wang GH, Zhao XN, J. Cryst. Growth, 255(3-4), 308, 2003