Issue
Korean Journal of Chemical Engineering,
Vol.31, No.3, 446-451, 2014
Adsorption characteristics of waste crab shells for silver ions in industrial wastewater
Waste crab shells were used as an adsorbent to efficiently adsorb silver ions in actual industrial wastewater. The functional groups like -NHCO or -NO2 groups in crab shells play an important role in the adsorption of silver ions. The highest removal efficiency was about 96% obtained from the 30 g/L of adsorbent concentration at initial pH 6.0 of waste solution. Langmuir sorption model was chosen to estimate the maximum uptake capacity and affinity constant of waste crab shells for silver ions, and its value was 5.21mg/g-dry mass and 0.411 L/mg, respectively. Entire adsorption process was completed in 60 min, and removal efficiency of crab shells was higher than that of Amberlite IR 120 plus resin. The effect of temperature could be neglected in the range of 15.0-45.0 ℃. Also, instrumental analysis such as SEM (scanning electron microscopy) photographs, EDX (energy dispersive X-ray) spectrum, and FT-IR spectrum were applied to investigate the surface condition and functional groups of crab shells.
[References]
  1. Wang X, Zhang L, Ma C, Song R, Hou H, Li D, Hydrometallurgy, 100, 82, 2009
  2. Huo HY, Su HJ, Tan TW, Chem. Eng. J., 150(1), 139, 2009
  3. Purcell TW, Peters JJ, Environ. Toxicol. Chem., 17, 539, 1998
  4. Ghassabzadeh H, Mohadespour A, Torab-Mostaedi M, Zaheri P, Maragheh MG, Taheri H, J. Hazard. Mater., 177(1-3), 950, 2010
  5. Bianchini A, Wood CM, Environ. Toxicol. Chem., 22, 1361, 2003
  6. Grosell M, Brauner C, Kelly SP, McGeer JC, Bianchini A, Wood CM, Environ. Toxicol. Chem., 21, 369, 2002
  7. Mack C, Wilhelmi BJ, Duncan R, Burgess JE, Biotechnol. Adv., 25, 264, 2007
  8. Wen LS, Santschi PH, Gill GA, Tang D, Environ. Toxicol. Chem., 21, 2040, 2002
  9. Wang S, Li H, Chen X, Tang M, Qi Y, J. Environ. Sci., 24(12), 2166, 2012
  10. Donia AM, Atia AA, Elwakeel KZ, Hydrometallurgy, 87, 197, 2007
  11. Kononova ON, Kholmogorov AG, Danilenko NV, Goryaeva NG, Shatnykh KA, Kachin SV, Hydrometallurgy, 88, 189, 2007
  12. Viraraghavan T, Rao AK, J. Environ. Sci. Health., 26, 721, 1991
  13. Wafwoyo W, Seo CW, Marshall WE, J. Chem. Technol. Biotechnol., 74(11), 1117, 1999
  14. Vaughan T, Seo CW, Marshall WE, Bioresour. Technol., 78, 133, 2011
  15. Sari A, Tuzen M, Micoropor. Mesopor. Mater., 170, 155, 2013
  16. Inoue K, Gurung M, Adhikari BB, Kawakita H, Ohto K, Alam S, Hydrometallurgy, 133, 84, 2013
  17. K. Vijayaraghavan, K. Palanivelu and M. Velan, J. Hazard. Mater., B, 119, 2005
  18. Pradhan S, Shukla SS, Dorris KL, J. Hazard. Mater., B, 125, 2005
  19. Jeon C, Korean J. Chem. Eng., 28(3), 813, 2011
  20. Atia AA, Hydrometallurgy, 80, 98, 2005
  21. Yeom SH, Jeon DJ, Bioresour. Technol., 86, 32, 2009
  22. Ren YM, Wei XZ, Zhang ML, J. Hazard. Mater., 158(1), 14, 2008
  23. Sari A, Tuzen M, Citak D, Soylak M, J. Hazard. Mater., 148(1-2), 387, 2007
  24. Hanzlik P, Jehlicka J, Weishauptova Z, Sebek O, Plant Soil Environ., 50, 257, 2004
  25. Karabakan A, Karabulut S, Denizli A, Yurum Y, Adsorpt. Sci. Technol., 22, 135, 2004
  26. Kwon TN, Jeon C, J. Ind. Eng. Chem., 19(1), 68, 2013
  27. Zhou D, Zhang LN, Zhou JP, Guo SL, Water Res., 38, 2643, 2004
  28. Hanzlik J, Jehlicka J, Sebek O, Weishauptova Z, Machovic V, Water Res., 38, 2178, 2004