Issue
Korean Journal of Chemical Engineering,
Vol.31, No.3, 436-445, 2014
Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens
The hydrodynamic characteristic performance of an internal draft tube inverse fluidized bed biofilm reactor was studied for the aerobic biodegradation of phenol (1,200 mg/l) using Pseudomonas fluorescens for various ratios of settled bed volume to reactor working volume (Vb/Vr) under batchwise condition with respect to liquid phase. The operating parameters, such as superficial gas velocity, phase hold ups, aspect ratio and bed height, were analyzed for different ratios of (Vb/Vr). The effect of biodegradation on synthetic phenolic effluent was determined from the reduction in chemical oxygen demand and phenol removal efficiency. The optimum value of (Vb/Vr)m was 0.20 for the optimal superficial gas velocity, Ugm=0.220 m/s with the COD reduction efficiency of 98.5% in 48 hours. The biomass and biofilm characteristics of P. fluorescens were determined for optimal hydrodynamic operating parameters by evaluating its biofilm dry density and thickness, bioparticle density, suspended and attached biomass concentration.
[References]
  1. Fan LS, Gas-liquid-solid fluidization engineering, Butterworths, Boston, USA, 1989
  2. Sokol W, Int. J. Chem. React. Eng., 8, 1, 2010
  3. Sokol W, Hanafi MR, Biochem. Eng. J., 3, 185, 1999
  4. Nikolov L, Karamenew D, Can. J. Chem. Eng., 65, 214, 1987
  5. Ulaganathan N, Krishnaiah K, Bioproc. Biosyst. Eng., 15, 159, 1996
  6. Garnier A, Chavarie C, Andre G, Klvana D, Chem. Eng. Commun., 98, 31, 1990
  7. Olivieri G, Marzocchella A, Salatino P, Can. J. Chem. Eng., 88(4), 574, 2010
  8. Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143, 1982
  9. Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971, 1997
  10. Krishna SV, Bandaru SR, Murthy DVS, Krishnaiah K, China Part., 5, 351, 2007
  11. Sivasubramanian V, Velan M, J. Chem. Eng. Jpn., 37(12), 1436, 2004
  12. Ochieng A, Ogada T, Sisenda W, Wambua P, J. Hazard. Mater., 90(3), 311, 2002
  13. Jena HM, Sahoo BK, Roy GK, Meikap BC, Chem. Eng. J., 145(1), 50, 2008
  14. Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233, 1999
  15. Han SJ, Tan RBH, Loh KC, Trans IChemE, 78, 2000
  16. Renganathan T, Krishnaiah K, Chem. Eng. Sci., 60(10), 2545, 2005
  17. Gomez L, Bodalo A, Gomez E, Chem. Eng. J., 127, 47, 2006
  18. Choi HS, Shin MS, Korean J. Chem. Eng., 16(5), 670, 1999
  19. Sowmeyan R, Swaminathan G, Bioresour. Technol., 99(9), 3877, 2008
  20. de Souza AAU, Brandao HL, Zamporlini IM, Soares HM, de AGU de Souza SM, Res. Conserv. Recycl., 52, 511, 2008
  21. Souza R, Bresolin ITL, Bioni TL, Gimenes ML, Dias BP, Braz. J. Chem. Eng., 21, 219, 2004
  22. Agarry SE, Solomon BO, Int. J. Environ. Sci. Technol., 5, 223, 2008
  23. Kotresha D, Vidyasagar GM, Biotechnol. Bioeng., 33, 987, 2007
  24. APHA-AWA-WPCF1992, Standards methods for the examination of water and waste water, Sixteenth Ed., American Public Health Association, American Water Works Association: Water Pollution Control Federation, Washington, DC, USA, 1992
  25. Yang RD, Humphrey AE, Biotechnol. Bioeng., 17, 1211, 1975
  26. Agarry SE, Solomon BO, Int. J. Environ. Sci. Technol., 5, 223, 2008
  27. Rajasimman M, Karthikeyan C, Front. Chem. Eng. China, 3, 235, 2009
  28. Rabah KJF, Dahab FM, Water Res., 38, 4262, 2004
  29. Fan LS, Hwang SJ, Matsuura A, Chem. Eng. Sci., 39, 1677, 1984
  30. Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81(3-4), 853, 2003
  31. Sokol W, Ambaw A, Woldeyes B, Chem. Eng. J., 150(1), 63, 2009
  32. Lee JC, Buckley PS, Fluid mechanics and aeration characteristics of fluidized beds, In: P. F. Cooper, B. Atkinson (Ed.), Biological fluidized bed treatment of water and wastewater, Ellis Horwood, Chichester, UK, 1981
  33. Tang WT, Fan LS, AIChE J., 33, 239, 1987
  34. Olivieri G, Russo ME, Marzocchella A, Salatino P, Biotechnol. Prog., 27(6), 1599, 2011
  35. Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639, 1997
  36. Arun N, Razack AA, Sivasubramanian V, Chem. Eng. Commun., 200(9), 1260, 2013
  37. Coelhoso I, Boatventura R, Rodriguez A, Biotechnol. Bioeng., 40, 625, 1992
  38. Liu Y, Tay JH, Water Res., 36, 1653, 2002
  39. Beyenal H, Tanyolac A, Biochem. Eng. J., 1, 53, 1998
  40. Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ, Biotechnol. Bioeng., 58(4), 400, 1998
  41. Fujie K, Hu HY, Ikeda Y, Urano K, Chem. Eng. Sci., 47, 3745, 1992
  42. Chen RC, Reese J, Fan LS, AIChE J., 40(7), 1093, 1994
  43. Guo YX, Rathor MN, Ti HC, Chem. Eng. J., 67, 205, 1997
  44. Hill GA, Robinson CW, Biotechnol. Bioeng., 17, 1599, 1975
  45. Schroder M, Muller C, Posten C, Deckwer WD, Hecht V, Biotechnol. Bioeng., 54(6), 567, 1997