Issue
Korean Journal of Chemical Engineering,
Vol.31, No.1, 125-131, 2014
Screening test for aqueous solvents used in CO2 capture: K2CO3 used with twelve different rate promoters
K2CO3 solution is widely used in the CO2-capture industry. In particular, it has advantages for treating CO2 in flue gas under high-temperature and high-pressure conditions. However, it has a lower CO2-loading capacity and slower absorption kinetics than those of amines, which are its major disadvantages. Thus, in this study, we investigated ten loading-rate promoters, five primary amines and five secondary amines, to develop higher CO2-loading capacity and faster absorption kinetics. The screening tests of the absorption and desorption processes were conducted at 70 ℃ and 90 ℃, respectively. Based on the results, we concluded that all the amines used improved the CO2-loading and absorption kinetics compared with the use of K2CO3 alone. At a certain value CO2 loading, the respective performance of the primary and secondary amines was twice and thrice better, respectively, than the neat K2CO3 solution. Thus, secondary amines had superior absorption capacity and absorption/desorption rate compared to primary amines. Among the secondary amines, pipecolic acid, sarcosine, and isonipecotic acid were determined as the most effective absorption rate promoters.
[References]
  1. IPCC, Cambridge University Press, Cambridge, UK, Chapters 1 and 2, 2001
  2. Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, DinizdaCosta JC, May EF, J. Petrol. Sci. Eng., 94-95, 123, 2012
  3. Aroonwilas A, Veawab A, Int. J. Greenh. Con., 2, 143, 2007
  4. Ismael M, Sahnoun R, Suzuki A, Koyama M, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Shimizu S, Del Carpio CA, Miyamoto A, Int. J. Greenh. Con., 5, 612, 2009
  5. Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779, 1997
  6. Song HJ, Park S, Kim H, Gaur A, Park JW, Lee SJ, Int.J. Greenh. Gas. Con., 11, 64, 2012
  7. Lee S, Filburn TP, Gray M, Park JW, Song HJ, Ind. Eng. Chem. Res., 47(19), 7419, 2008
  8. Kim YE, Choi JH, Nam SC, Yoon YI, Ind. Eng. Chem. Res., 50(15), 9306, 2011
  9. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619, 2004
  10. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ, Energy Fuels, 18(2), 569, 2004
  11. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465, 2008
  12. Zhao CW, Chen XP, Zhao CS, Ind. Eng. Chem. Res., 49(23), 12212, 2010
  13. Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC, Korean J. Chem. Eng., 23(3), 374, 2006
  14. Munoz DM, Portugal AF, Lozano AE, De La Campa JG, De Abajo J, Energy Environ. Sci., 2, 883, 2009
  15. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251, 2007
  16. Singh P, Versteeg GF, Process Saf. Environ. Protect., 86(B5), 347, 2008
  17. van Hoist J, Versteeg GF, Brilman DWF, Hogendoorn JA, Chem. Eng. Sci., 64(1), 59, 2009
  18. Oexmann J, Hensel C, Kather A, Int. J. Greenh. Gas. Con., 2, 539, 2008
  19. Bougie F, Lauzon-Gauthier J, Iliuta MC, Chem. Eng. Sci., 64(9), 2011, 2009
  20. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 54, 3619, 2004
  21. Wappel D, The University of Melbourne, Melbourne, Victoria, Australia, 2006
  22. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531, 2000
  23. Hetland J, Christensen T, Appl. Therm. Eng., 28, 2030, 2008
  24. Tanga Z, Feia W, OLi Y, Energy Proc., 4, 307, 2011
  25. Yonn Y, Nam S, Jung S, Kim Y, Energy Proc., 4, 267, 2011
  26. Knuutila H, Juliussen O, Svendsen HF, Chem. Eng. Sci., 65(6), 2177, 2010
  27. Cullinane JT, Rochelle GT, Fluid Phase Equilib., 227(2), 197, 2005
  28. Lu SM, Ma YG, Zhu CY, Shen SH, Chin. J. Chem. Eng., 15(6), 842, 2007