Issue
Korean Journal of Chemical Engineering,
Vol.30, No.12, 2191-2196, 2013
Polyhydroxybutyrate production accompanied by the effective reduction of chemical oxygen demand (COD) and biological oxygen demand (BOD) from industrial effluent
Industrial effluents are major pollution-causing agents for our environment. Our study focuses on utilizing effluents from different industries for efficient production of Polyhydroxybutyrate (PHB). Presence of PHB was identified by Sudan Black staining method. The PHB production parameters for Pseudomonas aeruginosa MTCC 4673 were studied critically, and it was found that glucose with 8.5 mg/L (0.0550 g PHB/g substrate) PHB concentration yielded the highest among the carbon sources used. Peptone with 8.9 mg/L (0.0524 g PHB/g substrate) of PHB concentration, an incubation period of 48 h and at a pH of 7 yielded the optimum results. These studies were compared with those of Alcaligens latus MTCC 2311. Dairy effluents (DE) and tannery effluents (TE) were considered for the best possible substrate, for the production of PHB in an optimized media. The results indicated that the dairy effluents gave a higher yield of PHB. Amongst various dilution levels studied from 10-100% (v/v), 50% (v/v) concentration of the dairy effluent showed maximum PHB productivity of 0.0582 g PHB/g substrate. A comparison of the chemical oxygen demand (COD) and biological oxygen demand (BOD) from the results, showed a significant removal percentage of 78.97% BOD and 53.482% COD, which highlighted the importance of utilizing effluents for PHB production, in order to reduce the risk of toxic effluent discharge. FT-IR analysis was carried out to confirm the presence of PHB.
[References]
  1. Kirithika M, Rajarathinam K, Venkatesan S, Dev. Microbiol. Mol. Biol., 2, 1, 2009
  2. Leaversuch R, Mod. Plastic., 8, 52, 1987
  3. Holmes PA, Phys. Technol., 16, 32, 1985
  4. Lee SY, Biotechnol. Bioeng., 49(1), 1, 1996
  5. Lee SY, Lee KM, Chang HN, Steinbuchel A, Biotechnol. Bioeng., 44(11), 1337, 1994
  6. Arun A, Murrugappan A, David Ravindran D, Veeramanikandan V, Balaji S, Afr. J. Biotechnol., 5, 1524, 2006
  7. Yu PH, Chua H, Huang AL, Ho KP, Appl. Biochem. Biotechnol., 78, 445, 1999
  8. Sayeed RZ, Ganguurde NS, Ind. J. Exp. Biol., 5, 68, 2010
  9. Grothe E, Moo-Young M, Chisti Y, Enzyme Microb. Technol., 25(1-2), 132, 1999
  10. Dawes EA, Senio PJ, Adv. Microb. Pbys., 10, 266, 1973
  11. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI, Biotechnol. Bioeng., 43(9), 892, 1994
  12. Kim SW, Kim P, Lee HS, Kim JH, Biotechnol. Lett., 18(1), 25, 1996
  13. Preusting H, van Houten R, Hoefs A, van Langenberghe EK, Favre-Bulle O, Witholt B, Biotechnol. Bioeng., 41, 550, 1993
  14. Hrabak O, Fems Microbiol. Rev., 103, 251, 1992
  15. Sujatha K, Mahalakshmi A, Shenbagarathai, Ind. J. Biotechnol., 4, 216, 2005
  16. Nickerson KW, Zarnick WJ, Kramer VC, FEMS Microbiol. Lett., 12, 327, 1981
  17. Wakisaka Y, Masaki E, Nishimoto Y, Appl. Environ. Microbiol., 43, 1473, 1982
  18. Anderson AJ, Haywood GW, Dawes EA, Int. J. Biol. Macromol., 12, 102, 1990
  19. Azhar A, El-sayed AM, Abdel Hafez , Abdelhady HM, Khodair TA, Aust. J. Basic Appl. Sci., 3, 617, 2009
  20. Choi J, Lee SY, Appl. Microbiol. Biotechnol., 51(1), 13, 1999
  21. Pandian SR, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S, Bioresour. Technol., 101, 705, 2009
  22. Dawes EA, Senior PJ, Adv. Microbiol. Phys., 10, 135, 1973
  23. Dobroth ZT, Hu SJ, Coats ER, McDonald AG, Bioresour. Technol., 102(3), 3352, 2011
  24. Sangyoka S, Poomipuk N, Reungsang A, Sains Malaysiana., 41, 1211, 2012
  25. Rawate T, Mavinkurve S, Curr. Sci., 83, 562, 2002
  26. Senthilkumar B, Prabakaran G, Ind. J. Biotechnol., 76, 2006