Issue
Korean Journal of Chemical Engineering,
Vol.30, No.12, 2127-2141, 2013
Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG
Cellulose is among the most important and abundant biopolymers in biosphere. It is the main structural component of a vast number of plants that carries vital functions for plant growth. Cellulose-based materials have been used in a variety of human activities ranging from papers and fabrics to engineering applications including production of biofuels. However, our understanding of the cellulose structure in its native form is quite limited because the current experimental methods often require separation or purification processes and provide only partial information of the cellulose structure. This paper aims at providing a brief background of the cellulose structure and reviewing the basic principles, capabilities and limitations of the cellulose characterization methods that are widely used by engineers dealing with biomass. The analytical techniques covered in this paper include x-ray diffraction, nuclear magnetic resonance, and vibrational spectroscopy (infrared, Raman, and sum-frequency-generation). The scope of the paper is restricted to the application of these techniques to the structural analysis of cellulose.
[References]
  1. Atalla RH, Isogai A, Celluloses in comprehensive natural products ii: Chemistry and biology, Elsevier Science, 2010
  2. Yu Y, Wu HW, Ind. Eng. Chem. Res., 48(23), 10682, 2009
  3. Gray M, Converse A, Wyman C, “Sugar monomer and oligomer solubility,” Appl. Biochem. Biotechnol., Davison B, Lee J, Finkelstein M, McMillan J, Eds., Humana Press, 179, 2003
  4. O’Sullivan AC, Cellulose., 4, 173, 1997
  5. Somerville C, Annu. Rev. Cell Dev. Biol., 22, 53, 2006
  6. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC, PNAS., 108, E1195, 2011
  7. Ding SY, Himmel ME, J. Agric. Food Chem., 54, 597, 2006
  8. Nishiyama Y, J. Wood Sci., 55, 241, 2009
  9. Sarkar P, Bosneaga E, Auer M, J. Exp. Bot., 60, 3615, 2009
  10. Brett CT, Int. Rev. Cytol., 199, 161, 2000
  11. Saxena IM, Brown RM, Ann. Bot., 96, 9, 2005
  12. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD, Science., 315, 804, 2007
  13. Zhao W, Berg A, Lab on a Chip., 2008, 1988, 2008
  14. Perez S, Samain D, Advances in Carbohydrate Chemistry and Biochemistry., 64, 25, 2010
  15. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF, Cellulose., 16, 641, 2009
  16. Somerville C, Youngs H, Taylor C, Davis SC, Long SP, Science, 329(5993), 790, 2010
  17. Carroll A, Somerville C, Ann. Rev. Plant Biol., 60, 165, 2009
  18. Atalla R, VanderHart D, Solid State Nucl. Magn. Reson., 15, 1, 1999
  19. Earl WL. VanderHart DL, Macromolecules., 14, 570, 1981
  20. Horii F, Hirai A, Kitamaru R, Polym. Bull., 10, 357, 1983
  21. Nishiyama Y, Langan P, Chanzy H, J. Am. Chem. Soc., 124(31), 9074, 2002
  22. Nishiyama Y, Sugiyama J, Chanzy H, Langan P, J. Am. Chem. Soc., 125(47), 14300, 2003
  23. Marrinan H, Mann J, J. Polym. Sci., 21, 301, 1956
  24. Sugiyama J, Persson J, Chanzy H, Macromolecules., 24, 2461, 1991
  25. Mann J, Marrinan H, J. Polym. Sci., 27, 595, 1958
  26. Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH, Biomacromolecules, 12(7), 2434, 2011
  27. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH, Carbohydr. Polym., 89, 802, 2012
  28. Lee CM, Mittal A, Barnette AL, Kafle K, Park YB, Shin H, Johnson DK, Park S, Kim SH, Cellulose., 20, 991, 2013
  29. Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH, J. Phys. Chem. B, 117(22), 6681, 2013
  30. Zugenmaier P, Crystalline cellulose and cellulose derivatives: Characterization and structures, Springer, 2008
  31. Habibi Y, Lucia LA, Rojas OJ, Chem. Rev., 110(6), 3479, 2010
  32. Cousins SK, Brown RM, Polymer, 36(20), 3885, 1995
  33. Hermans P, Vermaas D, J. Polym. Sci., 1, 149, 1946
  34. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974, 2002
  35. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC, Bioresour. Technol., 100(9), 2580, 2009
  36. Conte P, Maccotta A, De Pasquale C, Bubici S, Alonzo G, J.Agric. Food Chem., 57, 8748, 2009
  37. Isogai A, Atalla RH, Cellulose., 5, 309, 1998
  38. Wang Y, Deng YL, Biotechnol. Bioeng., 102(5), 1398, 2009
  39. Blaschek W, Koehler H, Semler U, Franz G, Planta., 154, 550, 1982
  40. Vietor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC, Plant J., 30, 721, 2002
  41. Newman RH, Hemmingson JA, Cellulose., 2, 95, 1995
  42. Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF, J. Phys. Chem. B, 115(10), 2155, 2011
  43. Hearle J, J. Appl. Polym. Sci., 7, 1175, 1963
  44. Scallan A, Text. Res. J., 41, 647, 1971
  45. Atalla RH, Vanderhart DL, Science., 223, 283, 1984
  46. Yamamoto H, Horii F, Macromolecules., 26, 1313, 1993
  47. Langan P, Nishiyama Y, Chanzy H, Biomacromolecules, 2(2), 410, 2001
  48. Ruan D, Zhang L, Zhou J, Jin H, Chen H, Macromol. Biosci., 4, 1105, 2004
  49. Hori R, Wada M, Cellulose., 13, 281, 2006
  50. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J, Macromolecules, 34(5), 1237, 2001
  51. Wada M, Chanzy H, Nishiyama Y, Langan P, Macromolecules, 37(23), 8548, 2004
  52. Wada M, Heux L, Sugiyama J, Biomacromolecules, 5(4), 1385, 2004
  53. Gardiner ES, Sarko A, Can. J. Chem., 63, 173, 1985
  54. Chanzy H, Imada K, Vuong R, Protoplasma., 94, 299, 1978
  55. Horii F, Hirai A, Kitamaru R, Polym. Bull., 10, 357, 1983
  56. Langan P, Nishiyama Y, Chanzy H, J. Am. Chem. Soc., 121(43), 9940, 1999
  57. Rappenecker G, Zugenmaier P, Carbohydr. Res., 89, 11, 1981
  58. Waseda Y, Xray diffraction crystallography, Springer Verlag Berlin Heidelberg, 2011
  59. Honjo G, Watanabe M, Nature., 181, 326, 1958
  60. Sugiyama J, Vuong R, Chanzy H, Macromolecules., 24, 4168, 1991
  61. Segal L, Creely J, Martin A, Conrad C, Text. Res. J., 29, 786, 1959
  62. Yoshiharu N, Shigenori K, Masahisa W, Takeshi O, Macromolecules, 30(20), 6395, 1997
  63. Jenkins R, Snyder R, Introduction to x-ray powder diffractometry, Wiley-Interscience, 1996
  64. Chandrasekaran R, Adv. Carbohydr. Chem. Biochem., 52, 311, 1997
  65. Chu S, Jeffrey G, Acta Crystallogr., B24, 830, 1968
  66. Ham JT, Williams DG, Acta Crystallogr., B26, 1373, 1970
  67. Gardner KH, Blackwell J, Biopolymers., 13, 1975, 1974
  68. Briinger AT, Nature., 355, 472, 1992
  69. Gessler K, Krauss N, Steiner T, Betzel C, Sarko A, Saenger W, J. Am. Chem. Soc., 117(46), 11397, 1995
  70. Picot D, Loll PJ, Garavito RM, Nature, 367(6460), 243, 1994
  71. Meyer K, Misch L, Helu Chim. Acta., 20, 232, 1937
  72. French AD, Cellulose., In press, 2013
  73. Kim NH, Imai T, Wada M, Sugiyama J, Biomacromolecules., 7, 7, 2006
  74. Patterson A, Phys. Rev., 56, 978, 1939
  75. Oliveira RP, Driemeier C, J. Appl. Crystallogr., 46, 1196, 2013
  76. Driemeier C, Bragatto J, J. Phys. Chem. B., 117, 415421, 2012
  77. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK, Biotechnol. Biofuels., 3, 1, 2010
  78. Driemeier C, Calligaris GA, J. Appl. Crystallogr., 44, 184, 2010
  79. Drago R, Physical methods in chemistry, W.B. Saunders Company, Philadelphia, 1977
  80. Derome AE, Modern nmr techniques for chemistry research, Pergamon Books Inc., New York, 1987
  81. Pohmann R , “Physical basics of nmr,” In vivo nmr imaging, Schroder, L. and Faber, C., Eds., Humana Press, 3, 2011
  82. Duer MJ, Solid state nmr spectroscopy: Principles and applications, Wiley-Blackwell, 2008
  83. Apperley DC, Solid state nmr: Basic principles & practice, Momentum Press, New York, 2012
  84. Laws DD, Bitter HML, Jerschow A, Angew. Chem. Int. Ed., 41, 3096, 2002
  85. Pettifer R, Brouder C, Benfatto M, Natoli C, Hermes C, Lopez MR, Physical Review B., 42, 37, 1990
  86. Hennel JW, Klinowski J, “Magic-angle spinning: A historical perspective,” New techniques in solid-state nmr, Springer, 1, 2005
  87. Andrew ER, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences., 299, 505, 1981
  88. Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M, J. Am. Chem. Soc., 124(25), 7506, 2002
  89. Kubicki JD, Mohamed MNA, Watts HD, Cellulose., 20, 9, 2013
  90. Larsson PT, Wickholm K, Iversen T, Carbohydr. Res., 302, 19, 1997
  91. Wickholm K, Larsson PT, Iversen T, Carbohydr. Res., 312, 123, 1998
  92. Newman RH, Holzforschung., 58, 91, 2004
  93. Newman RH, Solid State Nucl. Magn. Reson., 15, 21, 1999
  94. Yamamoto H, Horii F, Macromolecules., 26, 1313, 1993
  95. Newman RH, Davidson TC, Cellulose., 11, 23, 2004
  96. Banwell CN, Fundamentals of molecular spectroscopy: 4e, Tata McGraw-Hill Education, 1994
  97. Stuart BH, Infrared spectroscopy: Fundamentals and applications, Wiley, 2004
  98. Wiley JH, Atalla RH, Carbohydr. Res., 160, 113, 1987
  99. Imai T, Sugiyama J, Macromolecules, 31(18), 6275, 1998
  100. Jarvis M, Nature., 426, 611, 2003
  101. Atalla RH, IPC Technical Paper Series., 19, 1, 1975
  102. Agarwal U, Reiner R, Ralph S, Cellulose., 17, 721, 2010
  103. Schenzel K, Fischer S, Brendler E, Cellulose., 12, 223, 2005
  104. Akerholm M, Hinterstoisser B, Salmen L, Carbohydr. Res., 339, 569, 2004
  105. Nelson ML, O’Connor RT, J. Appl. Polym. Sci., 8, 1325, 1964
  106. Jeffries R, Polymer., 4, 375, 1963
  107. Hishikawa Y, Togawa E, Kataoka Y, Kondo T, Polymer, 40(25), 7117, 1999
  108. Jeffries R, J. Appl. Polym. Sci., 8, 1213, 1964
  109. Hofstetter K, Hinterstoisser B, Salmen L, Cellulose., 13, 131, 2006
  110. Horikawa Y, Sugiyama J, Cellulose., 15, 419, 2008
  111. Lambert AG, Davies PB, Neivandt DJ, Appl. Spectrosc.Rev., 40, 103, 2005
  112. Shen Y, Nature., 337, 519, 1989
  113. Wang HF, Gan W, Lu R, Rao Y, Wu BH, Int. Rev. Phys. Chem., 24, 191, 2005
  114. Denev SA, Lummen TTA, Barnes E, Kumar A, Gopalan V, J. Am. Ceram. Soc., 94(9), 2699, 2011
  115. Hieu HC, Tuan NA, Li H, Miyauchi Y, Mizutani G, Appl.Spectrosc., 65, 1254, 2011
  116. LaComb R, Nadiarnykh O, Townsend SS, Campagnola PJ, Opt. Commun., 281, 1823, 2008
  117. Tian L, Qu J, Guo Z, Jin Y, Meng Y, Deng X, J. Appl. Phys., 108, 054701, 2010
  118. Vidal F, Tadjeddine A, Rep. Prog. Phys., 68, 1095, 2005
  119. Williams CT, Beattie DA, Surf. Sci., 500, 545, 2002
  120. Richmond GL, Chem. Rev., 102(8), 2693, 2002
  121. Sturcova A, His I, Wess TJ, Cameron G, Jarvis MC, Biomacromolecules, 4(6), 1589, 2003
  122. French AD, Johnson JP, Cellulose., 16, 959, 2009
  123. Neville A, BioEssays., 3, 4, 1985
  124. Kutschera U, Ann. Bot., 101, 615, 2008
  125. Wang W, Chen X, Donohoe BS, Ciesielski PN, Mittal A, Katahira R, Kuhn EM, Kafle K, Lee CM, Park S, Kim SH, Tucker MP, Himmel ME, Johnson DK, Submitted to Biomass and Bioenergy, 2013
  126. Park YB, Lee CM, Zhang T, Koo BW, Park S, Cosgrove DJ, Kim SH, Plant Physiol. (http://www.plantphysiol.org/content/early/2013/08/30/pp.113.225235.abstract, Published online before print August 2013, DOI:http://dx.doi.org/10.1104/pp.113. 225235 Plant Physiology August 2013 pp.113.225235), 2013
  127. Heiner AP, Sugiyama J, Teleman O, Carbohydr. Res., 273, 207, 1995
  128. Mazeau K, Heux L, J. Phys. Chem. B, 107(10), 2394, 2003
  129. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW, Carbohydr. Res., 341, 138, 2006