Issue
Korean Journal of Chemical Engineering,
Vol.30, No.11, 2052-2058, 2013
Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor
Ralstonia eutropha was able to degrade p-nitrophenol (PNP) at concentrations ranging from 5 to 15mg l^(-1) in the presence of phenol which was kept at the constant concentration of 200 mg l^(-1). More than 90% of phenol was degraded within 30 h and in the absence of PNP. While in this time period and in the presence of 15 mg l^(-1) less than 30% of phenol was degraded and PNP removal ability of the test bacterium was about 20%. Kissiris as a natural source of silicon dioxide having a very rigid structure with many micropores irregularly distributed throughout its surface was used to evaluate effectiveness of the cell immobilization using a Kissiris-immobilized cell bioreactor [ICB]. By applying phenol-feeding regime in the ICB operated in a batch recycling mode, simultaneous degradation of phenol in total amount of 1,000 mg l^(-1) with 15 mg l^(-1) PNP was achieved within 40 h.
[References]
  1. Qiu X, Zhong Q, Li M, Bai W, Li B, Int. Biodeter. Biodegr., 59, 297, 2007
  2. Yong YC, Zhong JJ, Process. Biochem., 45, 1937, 2010
  3. Kim IS, Lee H, Trevors JT, FEMS Microbiol. Lett., 17, 200, 2001
  4. Schuurmann G, Somashekar RK, Kristen U, J. Environ. Toxicol. Chem., 15, 1702, 1996
  5. Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE, Int. J. Biodeter. Biodegr., 55, 103, 2005
  6. Zubay G, Biochemistry, 1983, Addison-Wesley Publishing Company, Inc. 4, 1983
  7. Dixon M, Webb E, Thorne C, Tripton K, 3rd Ed., Enzyme, Academic Press, 1979
  8. Marvinsikkema FD, Debont JA, Appl. Microbiol. Biotechnol., 42(4), 499, 1994
  9. Kulkarni M, Chaudhari A, J. Environ. Manage., 85, 496, 2007
  10. Ye J, Singh A, Ward OP, World. J. Microb. Biot., 20, 117, 2004
  11. Wei Q, Liu H, Zhang JJ, Wang SH, Xiao Y, Zhou NY, Biodegradation., 21, 575, 2010
  12. Kadiyala V, Spain JC, Appl. Environ. Microbiol., 64, 2479, 1998
  13. Kitagawa W, Kimura N, Kamagata Y, J. Bacteriol., 186, 4894, 2004
  14. Spain JC, Gibson DT, J. Appl. Environ. Microbiol., 57, 812, 1991
  15. Shan X, Junxin L, Lin L, Chuanling Q, J. Environ. Sci., 21, 76, 2009
  16. Nishino S, Spain J, Environ. Sci. Technol., 27, 489, 1993
  17. Alvarez-Cohen L, Speitel GE, Biodegradation., 12, 105, 2001
  18. Meunier CF, Dandoy P, Su BL, J. Colloid Interface Sci., 342(2), 211, 2010
  19. Kana K, Kanellaki M, Psarianos C, Koutinas A, J. Ferment.Bioeng., 68, 144, 1989
  20. Nebergall W, Schmidt F, Holtzclaw H, General Chemistry, 5th Ed., D.C. Health Company, Massachusetts, 1976
  21. Lakhwala F, Sofer S, J. Chem. Technol. Biot., 52, 499, 1991
  22. Salehi Z, Sohrabi M, Vahabzadeh F, Fatemi S, Kawase Y, J. Hazard. Mater., 177(1-3), 582, 2010
  23. Nickzad A, Mogharei A, Monazzami A, Jamshidian H, Vahabzadeh F, Water Environ. Res., 84, 626, 2012
  24. Habibi A, Vahabzadeh F, J. Environ. Sci. Heal. A., 48, 279, 2012
  25. Sedighi M, Karimi A, Vahabzadeh F, J. Hazard. Mater., 169(1-3), 88, 2009
  26. Box JD, J. Wat. Res., 17, 511, 1983
  27. Chandekar CJ, Ingle AO, J. Ind. Poll. Cont., 6, 11, 1990
  28. Cho YG, Yoon JH, Park YH, Lee ST, J. Gen. Appl.Microbiol., 44, 303, 1998
  29. Cho YG, Rhee SK, Lee ST, Biodegradation., 11, 21, 2000
  30. Hill GA, Milne BJ, Nawrocki PA, Appl. Microbiol. Biotechnol., 46(2), 163, 1996
  31. Hofrichter M, Gunther T, Fritsche W, Biodegradation., 3, 415, 1993
  32. Loh KC, Wu T, Can. J. Chem. Eng., 84, 2006
  33. Johnson BF, Stanier RY, J. Bacteriol., 107, 468, 1971
  34. Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z, Enzyme Microb. Technol., 39(5), 1036, 2006
  35. Leonard D, Ben Youssef C, Destruhaut C, Lindley ND, Queinnec I, Biotechnol. Bioeng., 65(4), 407, 1999
  36. Doran P, Bioprocess engineering principles, Academic Press, 1995
  37. Erhan E, Yer E, Akay G, Keskinler B, Keskinler D, J. Chem. Technol. Biotechnol., 79(2), 195, 2004