Issue
Korean Journal of Chemical Engineering,
Vol.30, No.8, 1626-1630, 2013
Highly efficient molecular delivery into Chlamydomonas reinhardtii by electroporation
Electroporation is a highly efficient delivery method for transformation in various cell types; however, in microalgae there is lack of optimized electroporation parameters due to cell wall, protoplast preparation and viability. Therefore, we optimized electroporation conditions for transforming microalgae using Chlamydomonas reinhardtii strains of wild type and mutant (cell wall deficient). To investigate the effects of molecule size, calcein (623 Da) and fluorescein isothiocyanate-dextran (FITC-dextran, 40 kDa) were used and various electroporation parameters were applied such as different voltage and pulse length and molecule uptake pattern and cell viability were observed. Cell wall is insignificant in case of small sized molecule uptake as noticed by 1.25 kV/cm and 30 ms for both strains, whereas for larger molecules by 1.5 and 2 kV/cm and 30 ms for mutant and wild type, respectively. In terms of viability, there was no significant difference in both the strains on applied electroporation parameters. The controlled parameters corresponding to 1.5 to 2.0 kV/cm and 20 to 30 ms could be used to deliver macromolecules (DNA, proteins) into cells effectively.
[References]
  1. Inderwildi OR, King DA, Energy Environ. Sci., 2, 343, 2009
  2. Lu J, Sheahan C, Fu P, Energy Environ. Sci., 4, 2451, 2011
  3. Mata TM, Martins AA, Caetano NS, Renewable and Sustainable Energy Reviews., 14, 217, 2010
  4. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  5. Beer LL, Boyd ES, Peters JW, Posewitz MC, Curr. Opin.Biotechnol., 20, 264, 2009
  6. Davis SWDSC, Boundy RG, Ed., Transportation energy data book, the Center for Transportation Analysis of the Oak Ridge National Laboratory, 2012
  7. Demirbas A, Energy Policy, 35(9), 4661, 2007
  8. Knothe G, Sharp CA, Ryan TW, Energy Fuels, 20(1), 403, 2006
  9. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC, Eukaryot Cell., 9, 486, 2010
  10. Qin S, Lin H, Jiang P, Biotechnol. Adv., 30, 1602, 2012
  11. Harris EH, Annual Review of Plant Physiology and Plant Molecular Biology., 52, 363, 2001
  12. Hoober JK, Science., 246, 1503, 1989
  13. Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR, Plant Physiol., 131, 401, 2003
  14. Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH, Curr. Opin. Plant Biol., 10, 190, 2007
  15. Rochaix JD, Vandillewijn J, Nature., 296, 70, 1982
  16. Neumann E, Schaeferridder M, Wang Y, Hofschneider PH, Embo. J., 1, 841, 1982
  17. Zimmermann U, Pilwat G, Riemann F, Biochimica Et Biophysica Acta., 375, 209, 1975
  18. Gehl J, Acta Physiologica Scandinavica., 177, 437, 2003
  19. Brown LE, Sprecher SL, Keller LR, Molecular and Cellular Biology., 11, 2328, 1991
  20. Shimogawara K, Fujiwara S, Grossman A, Usuda U, Genetics., 148, 1821, 1998
  21. Canatella PJ, Karr JF, Petros JA, Prausnitz MR, Biophysical J., 80, 755, 2001
  22. Azencott HR, Peter GF, Prausnitz MR, Ultrasound in Medicine and Biology., 33, 1805, 2007
  23. Yang C, Owen HA, Yang P, J. Cell. Biol., 180, 403, 2008
  24. Lelong A, Hegaret H, Soudant P, Research in Microbiology., 162, 969, 2011
  25. Kolber Z, Falkowski PG, Limnology and Oceanography., 38, 1646, 1993
  26. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B, J. Biological Chem., 278, 585, 2003
  27. Sun Y, Yang ZY, Gao XS, Li QY, Zhang QQ, Xu ZK, Molecular Biotechnology., 30, 185, 2005
  28. Kilian O, Benemann CSE, Niyogi KK, Vick B, Proceedings of the National Academy of Sciences of the United States of America., 108, 21265, 2011
  29. Weaver JC, Chizmadzhev YA, Bioelectrochemistry and Bioenergetics., 41, 135, 1996
  30. Monk BC, Adair WS, Cohen RA, Goodenough UW, Planta., 158, 517, 1983