Issue
Korean Journal of Chemical Engineering,
Vol.30, No.7, 1429-1435, 2013
Inulin conversion to hydroxymethylfurfural by Brønsted acid in ionic liquid and its physicochemical characterization
A simple conversion process of inulin polymer into hydroxymethylfurfural (HMF) was developed using Brønsted acid catalyst (HCl) in the presence of an ionic liquid, 1-octyl-3-methylimidazolium chloride ([OMIM]Cl). In addition, the physicochemical properties of inulin particle and its depolymerixation products were scrutinized. FESEM and XRD diffraction frequency showed that inulin particles are clustered in a granulated formation and their molecular structure is highly amorphous. FT-IR analysis identified five characteristic frequency regions: Region 1; 700-900, Region 2; 900-1,200, Region 3; 1,200-1,350; Region 4; 1,350-1,500, and Region 5; 1,530-1,800 cm.1. HPLC analysis confirmed that the major composition of inulin consists of fructose and glucose. The synthesis of HMF was significantly affected by the Brønsted catalyst and its concentration. Its highest yield (63.1±5.1 dwt%) was achieved at 0.3M HCl in the presence of [OMIM]Cl. No presence of the Brønsted catalyst exhibited negligible HMF yield (2.3±1.1 dwt%). Our results demonstrate that the Brønsted catalyst plays a pivotal role in the catalytic process of HMF synthesis from inulin polymer.
[References]
  1. Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N, J.Excipients Food Chem., 1, 27, 2010
  2. Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B, Green Chem., 11, 873, 2009
  3. James OO, Maity S, Usman LA, Ajanaku KO, Ajani OO, Siyanbola TO, Siyanbola TO, Sahu S, Chaubey R, Energy Environ. Sci., 3, 1833, 2010
  4. Yi YB, Lee JW, Choi YH, Park SM, Chung CH, Biomass Bioenery., 39, 484, 2012
  5. Yi YB, Ha MK, Lee JW, Chung CH, J. Cleaner Prod., 41, 244, 2013
  6. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA, Nature., 447, 982, 2007
  7. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930, 2010
  8. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Starch/Starke., 62, 326, 2010
  9. Lewkowski J, ARKIVOC,1, (ARKAT-USA;ISSN1424-6376). (Website; www.arkat-usa.org/home.aspx?VIEW-MANUSCRIPT&MSID=403)., 17, 2001
  10. Lee JW, Ha MK, Yi YB, Chung CH, Carbohydr. Res., 346, 177, 2011
  11. Yi YB, Ha MK, Lee JW, Chung CH, Chem. Eng. J., 180, 370, 2012
  12. Yi YB, Lee JW, Choi YH, Park SM, Chung CH, Environ. Chem. Lett., 10, 13, 2012
  13. Zhao H, Holladay JE, Brown H, Zhang ZC, Science., 316, 1597, 2007
  14. Yi YB, Ha MG, Lee JW, Park SM, Choi YH, Chung CH, J. Ind. Eng. Chem., 19(2), 523, 2013
  15. Tadesse H, Luque R, Energy Environ. Sci., 4, 3913, 2011
  16. Blecker C, Fougnies C, Herck JCV, Chevalier JP, Paquot M, J. Agric. Food Chem., 50, 1602, 2002
  17. Grube M, Bekers M, Upite D, Kaminska E, Spectroscopy., 16, 289, 2002
  18. Ronkart SN, Paquot M, Blecker CS, Fougnies C, Doran L, Lambrechts C, Norberg B, Deroanne C, Food Biophys., 4, 49, 2009
  19. Sievers C, Musin I, Marzialetti T, Olarte MBV, Agrawal PK, Jones C, ChemSusChem., 2, 665, 2009
  20. Binder JB, Raines RT, Nat. Acad. Sci. USA., 107, 4516, 2010
  21. Li C, Wang Q, Zhao ZK, Green Chem., 10, 177, 2008
  22. Yi YB, Lee JW, Hong SS, Choi YH, Chung CH, J. Ind. Eng. Chem., 17(1), 6, 2011
  23. Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee SG, Account Chem. Res., 43, 985, 2010
  24. Ronkart S, Blecker C, Fougnies C, van Herch JC, Wouters J, Paquot M, Carbohydr. Polym., 63, 210, 2006
  25. Ronkart SN, Deroanne C, Paquot M, Fougnies C, Lambrechts JC, Blecker CS, Food Biophys., 2, 83, 2007
  26. Fares MM, Salem MS, Khanfar M, Int. J. Pharm., 410, 206, 2011
  27. Max JJ, Chapados C, J. Phys. Chem., 111, 2679, 2007
  28. Wilson RH, Smith AC, Kaeurakova M, Saunders PK, Wellner N, Waldron KW, Plant Physiol., 124, 397, 2000
  29. Akiyama T, Itoh J, Fuchibe K, Advanced Syn. Catal., 348, 999, 2006
  30. Tong X, Li Y, ChemSusChem., 3, 350, 2010
  31. Kautz CF, Robinson AL, J. Amer. Chem. Soc., 50, 1022, 1928
  32. Antal MJ, Mok WSL, Richards GN, Carbohydr. Res., 199, 91