Issue
Korean Journal of Chemical Engineering,
Vol.30, No.7, 1423-1428, 2013
Detection of reactive oxygen species generated by microwave electrodeless discharge lamp and application in photodegradation of H2S
The photodegradation of hydrogen sulfide (H2S) was examined using a self-made microwave electrodeless discharge lamp (MEDL). The features of the MEDL had been tested. The results showed that the MEDL absorbed 18.3, 32.7 and 41.8W power at the microwave (MW) output power of 165, 330 and 660W, respectively. The intensity of the emitted light increased with increasing MW output power. The reactive oxygen species (ROS) generated by irradiated air and nitrogen were detected, respectively. It was illustrated that the irradiated air could generate a number of ROS, at least including 1O2 and ㆍOH. And the amount of ROS increased with increasing MW output power. In photodegradation of H2S process, the effects of MW output power and gas composition were investigated. The removal efficiency of H2S under nitrogen was obviously lower compared with that under air. The removal efficiency of H2S increased with increasing MW output power.
[References]
  1. Portela R, Sanchez B, Coronado JM, Candal R, Suarez S, Catal. Today, 129(1-2), 223, 2007
  2. Jeong GT, Lee GY, Cha JM, Park DH, Korean J. Chem. Eng., 25(1), 118, 2008
  3. Cho DR, Kim SY, Park DW, Mutin PH, Korean J. Chem. Eng., 26(2), 377, 2009
  4. Kato S, Hirano Y, Iwata M, Sano T, Takeuchi K, Matsuzawa S, Appl. Catal. B: Environ., 57(2), 109, 2005
  5. Chenar MP, Savoji H, Soltanieh M, Matsuura T, Tabe S, Korean J. Chem. Eng., 28(3), 902, 2011
  6. Kim SH, Kim IH, Lee WJ, Lee JH, Korean J. Chem. Eng., 25(5), 1131, 2008
  7. Canela MC, Alberici RM, Jardim WF, J. Photochem. Photobiol. A: Chem., 112, 73, 1998
  8. Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278, 2006
  9. Jang JS, Gyu Kim H, Borse PH, Lee JS, Int. J. Hydrog.Energy., 32, 4786, 2007
  10. Kataoka S, Lee E, Tejedor-Tejedor MI, Anderson MA, Appl. Catal. B: Environ., 61(1-2), 159, 2005
  11. Zhang XW, Wang YZ, Li GT, J. Mol. Catal. A-Chem., 237(1-2), 199, 2005
  12. Hong J, Sun C, Yang SG, Liu YZ, J. Hazard. Mater., 133(1-3), 162, 2006
  13. Gao ZQ, Yang SG, Na T, Sun C, J. Hazard. Mater., 145(3), 424, 2007
  14. Hong J, Ta N, Yang SG, Liu YZ, Sun C, Desalination, 214(1-3), 62, 2007
  15. CIrkva V, Zabov H, Hajek M, J. Photochem. Photobiol. A:Chem., 198, 13, 2008
  16. Literak J, Klan P, J. Photochem. Photobiol. A: Chem., 137, 29, 2000
  17. Klan P, Hajek M, Cirkva VR, J. Photochem. Photobiol. A:Chem., 140, 185, 2001
  18. Xia LY, Gu DH, Tan J, Dong WB, Hou HQ, Chemosphere., 71, 1774, 2008
  19. Wang J, Guo Y, Gao J, Jin X, Wang Z, Wang B, Li K, Li Y, Ultrason. Sonochem., 18, 1028, 2011
  20. Zhang Z, Xu Y, Ma X, Li F, Liu D, Chen Z, Zhang F, Dionysiou DD, J. Hazard. Mater., 209-210, 271, 2012
  21. Zhang X, Li G, Wang Y, Dyes Pigm., 74, 536, 2007
  22. Zhang XW, Wang YZ, Li GT, Qu JH, J. Hazard. Mater., 134(1-3), 183, 2006
  23. Han DH, Cha SY, Yang HY, Water Res., 38, 2782, 2004
  24. Umemura SI, Yumita N, Umemura K, Nishigaki R, Cancer Chemoth. Pharm., 43, 389, 1999
  25. Dai R, Shoemaker R, Farrens D, Han MJ, Kim CS, Song PS, J. Nat. Prod., 55, 1241, 1992
  26. Sachdev S, Davies KJA, Free Radical Biol. Med., 44, 215, 2008
  27. Linkous CA, Huang C, Fowler JR, J. Photochem. Photobiol. A: Chem., 168, 153, 2004