Issue
Korean Journal of Chemical Engineering,
Vol.30, No.7, 1403-1409, 2013
Phase-change core/shell structured nanofibers based on eicosane/poly(vinylidene fluoride) for thermal storage applications
We fabricated eicosane/poly(vinylidene fluoride) (PVDF) core/shell nanofibers by melt coaxial electrospinning as potential heat-storage applications. Eicosane, a hydrocarbon with melting point near the human body temperature and high latent heat, was chosen as the core material. Melted eicosane and PVDF solutions were coaxially electrospun using a double spinneret, in which melted eicosane was fed at 0.090-0.210 mL/h while the feeding rate of PVDF solution was maintained constant at 1.500 mL/h. The applied voltage and working distance were maintained constant at 12 kV and 17 cm, respectively. Good core/shell structure of nanofibers was observed at core feed rates of 0.090-0.180mL/h by transmission electron microscopy. Differential scanning calorimetry and thermogravimetric analysis values indicated good thermal stability and high energy-storage capacity of the obtained nanofibers. The highest amount of eicosane encapsulated in the electrospun core/shell nanofibers reached 32.5 wt% at core feed rate 0.180 mL/h and had a latent heat of 77 J/g at melting point 39.2 ℃. These shape-stabilized core/shell composite nanofibers showed good thermoregulating properties and had sufficiently high tensile strength for potential energy-storage applications, especially in smart textiles.
[References]
  1. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S, Energy Conv. Manag., 45(9-10), 1597, 2004
  2. Belen Z, Jose MM, Luisa FC, Harald M, Appl. Therm. Eng., 23, 251, 2003
  3. Ravindra K, Manoj KM, Rohitash K, Deepak G, Sharma PK, Tak BB, Meena SR, Def. Sci. J., 61, 576, 2011
  4. Mondal S, Appl. Therm. Eng., 28, 1536, 2008
  5. Demirbas MF, Energy Source, Part B., 1, 85, 2006
  6. Chang CC, Tsai YL, Chiu JJ, Chen H, J. Appl. Polym. Sci., 112(3), 1850, 2009
  7. Sari A, Alkan C, Karaipekli A, Uzun O, Sol. Energy., 83, 1757, 2009
  8. Sanchez-Silva L, Tsavalas J, Sandberg D, Sanchez P, Rodriguez JF, Ind. Eng. Chem. Res., 49(23), 12204, 2010
  9. Yang Z, Wei Z, Leping L, Wujun L, Yi X, Adv. Sci. Lett., 4(3), 933, 2011
  10. Sanchez L, Sanchez P, Lucas A, Carmona M, Rodriguez JF, Colloid. Polym. Sci., 285(12), 1377, 2007
  11. Sanchez P, Sanchez-Fernandez MV, Romero A, Rodriguez JF, Sanchez-Silva L, Thermochim. Acta, 498(1-2), 16, 2010
  12. Zheng LX, Cheng TZ, Long ZG, Xian SL, Tao Z, Chinese J. Chem., 22, 411, 2004
  13. Shin Y, Yoo DI, Son K, J. Appl. Polym. Sci., 96(6), 2005, 2005
  14. Shin Y, Yoo DI, Son K, J. Appl. Polym. Sci., 97(3), 910, 2005
  15. Shim H, McCullough EA, Jones BW, Text. Res. J., 71(6), 495, 2001
  16. Chen C, Wang L, Huang Y, Mater. Lett., 62, 3515, 2008
  17. Chen CZ, Wang LG, Huang Y, Chem. Eng. J., 150(1), 269, 2009
  18. Chen CZ, Wang L, Huang Y, Polymer, 48(18), 5202, 2007
  19. Alay S, Gode F, Alkan C, Fibers and Polymers., 11(8), 1089, 2010
  20. Nguyen TTT, Lee JG, Park JS, Macromol. Res., 19(4), 370, 2011
  21. Do CV, Nguyen TTT, Park JS, Sol. Energy Mater. Sol.Cells., 104, 131, 2012
  22. McCann JT, Marquez M, Xia Y, Nano Lett., 6, 2868, 2006
  23. Salaun F, Devaux E, Bourbigot S, Rumeau P, Text. Res. J., 80(3), 195, 2010
  24. Deveci SS, Basal G, Colloid. Polym. Sci., 287(12), 1455, 2009
  25. Basal G, Deveci SS, Yalcin D, Bayraktar O, J. Appl. Polym. Sci., 121(4), 1885, 2011
  26. Zheng LX, Cheng TZ, Long ZG, Xian SL, Tao Z, Chinese J. Chem., 22, 411, 2004
  27. Diaz JE, Barrero A, Marquez M, Loscertales IG, Adv. Funct. Mater., 16(16), 2110, 2006
  28. Alkan C, Sari A, Karaipekli A, Uzun O, Sol. Energy Mater. Sol. Cells, 93(1), 143, 2009