Issue
Korean Journal of Chemical Engineering,
Vol.30, No.6, 1301-1311, 2013
Effect of drainage channel dimensions on the performance of wave-plate mist eliminators
We investigated the effects of drainage channel dimensions on droplet removal efficiency and pressure drop of the gas droplet flow in a wave-plate mist eliminator. Droplet dispersion in turbulent gas flows is numerically simulated using eddy interaction model (EIM) and Eulerian-Lagrangian method. Reynolds stress transport model (RSTM) with enhanced wall treatment and shear stress transport (SST) k-ω model are used for simulating the turbulent airflow. Comparison between the numerical simulations and available experimental data shows that eddy lifetime constant (CL) can affect the results significantly, and by selecting suitable values of the eddy lifetime constant, both turbulence models give reasonable predictions of droplet removal efficiency. Simulations of gas droplet flow in the eliminators with various drainage channel dimensions show that the drainage channel length (LDC) has a greater effect on droplet removal efficiency than the drainage channel width (WDC).
[References]
  1. Azzopardi BJ, Sanaullah KS, Chem. Eng. Sci., 57(17), 3557, 2002
  2. Berlemont A, Desjonqueres P, Gouesbet G, Int. J. Multiphase Flow., 16, 19, 1990
  3. Brunazzi E, Ghetti S, Merello C, Paglianti A, in Proceedings of Convegno Gricu, 625, 2004
  4. Burkholz A, Droplet separation, VCH Publishers, New York, USA, 1989
  5. Burry D, Bergeles G, Int. J. Multiphase Flow., 19, 65, 1993
  6. Calvert S, Jashnani IL, Yung S, J. Air Pollution Control Association., 24, 967, 1974
  7. Galletti C, Brunazzi E, Tognotti L, Chem. Eng. Sci., 63(23), 5639, 2008
  8. Ghetti S, Sc M. Thesis, University of Pisa, Pisa, Italy (in Italian), 2003
  9. Greenfeld C, Quarini G, ASME fluids engineering division summer meeting, June 22, 1997
  10. Hanjalic K, Launder BE, J. Fluid Mechnol., 51, 301, 1972
  11. Hinds WC, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York, 1982
  12. Houghton HG, Radford WH, Transactions of the American Institution of Chemical Engineers., 35, 427, 1939
  13. James PW, Wang Y, Azzopardi BJ, Hughes JP, Chem. Eng. Res. Des., 81(6), 639, 2003
  14. James PW, Azzopardi BJ, Wang Y, Hughes JP, Chem. Eng. Res. Des., 83(A5), 469, 2005
  15. Jøsang AI, Chr M. Melaaen, in 42nd Scandinavian Conference on Simulation and Modeling Porsgrunn, Norway, October 8, 2001
  16. Jøsang AI, Ph.D. Thesis, Dep. of Technol. (HiT-TF), Telemark Univ. Coll., Norway, 2002
  17. McNulty KJ, Monat JP, Hansen OV, Chem. Eng. Progress., 83, 48, 1987
  18. Menter FR, AIAA J., 32, 1598, 1994
  19. Phillips H, Deakin AW, in 4th Annual Meeting of the Aerosol Society Loughborough, UK, 1990
  20. Rafee R, Rahimzadeh H, Ahmadi G, Chem. Eng. Res. Des., 88(10A), 1393, 2010
  21. Rafee R, Rahimzadeh H, Iran J. Chem. Chem. Eng., 29, 97, 2010
  22. Sommerfeld M, Kohnen G, Ruger M, in 9th Symp. Turbulent Shear Flows, Kyoto, Japan, August 16, 1993
  23. Tian L, Ahmadi G, J. Aerosol Sci., 38, 377, 2007
  24. Verlaan CCJ, Ph.D. Thesis, Delft University of Technology, Delft, the Netherlands, 1991
  25. Wang Y, Davies GA, IChemE Part A: Chem. Eng. Res. Des., 74, 232, 1996
  26. Wang Y, James PW, Chem. Eng. Res. Des., 76(8), 980, 1998
  27. Wang Y, James PW, Chem. Eng. Res. Des., 77(8), 692, 1999
  28. Wilkinson D, IMechE Part E: Proc. Instn. Mech. Eng., 213, 265, 1999
  29. Zamora B, Kaiser AS, Chem. Eng. Sci., 66(6), 1232, 2011
  30. Zhou Q, Leschziner MA, in 8th Symp. Turbulent Shear Flows, Technical University of Munich, Germany, September, 1991