Issue
Korean Journal of Chemical Engineering,
Vol.30, No.6, 1272-1276, 2013
Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions
A kinetic model of mixed immobilized lipase (MIL) and co-immobilized lipase (CIL) systems was investigated by calculating the kinetic parameters based on the reaction mechanisms for lipase-catalyzed transesterification of soybean oil and methyl alcohol. The kinetic parameters were assessed under atmospheric and supercritical fluid conditions. Although the CIL system had a higher initial reaction rate, the effect of substrate inhibition by methanol was higher than that in the MIL system. The initial reaction rate of MIL and CIL decreased under atmospheric conditions as the methanol concentration increased. However, the initial reaction rate of MIL and CIL increased until methanol concentration increased to twice that of oil under the supercritical fluid condition. As a result, the inhibition effect by methanol was identified through a kinetic analysis. A simulated model can be used to predict the optimal conditions for biodiesel production under atmospheric and supercritical conditions.
[References]
  1. Chulalaksananukul W, Condoret JS, Delorme P, Willemot RM, FEBS. Lett., 276, 181, 1990
  2. Bull AT, Korean J. Chem. Eng., 18(2), 137, 2001
  3. Kwon CH, Shin DY, Lee JH, Kim SW, Kang JW, J.Microbiol. Biotechnol., 17, 1098, 2007
  4. Zhou GW, Li GZ, Xu J, Sheng Q, Collids Surf., 194, 41, 2001
  5. Freedman B, Butterfield RO, Pryde EH, J. Am. Oil Chem.Soc., 63, 1375, 1986
  6. Joelianingsih, Maeda H, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan AH, Abdullah K, Renew. Energy., 33, 1629, 2008
  7. Fukuda H, Kondo A, Noda H, J. Biosci. Bioeng., 92(5), 405, 2001
  8. Soumanou MM, Bornscheuer UT, Enzyme Microb. Technol., 33(1), 97, 2003
  9. Al-Zuhair S, Biotechnol. Prog., 21(5), 1442, 2005
  10. Park K, Lee S, Maken S, Koh W, Min B, Park J, Korean J. Chem. Eng., 23(4), 601, 2006
  11. Leedh DH, Kim JM , Shin HY, Kang SW, Kim SW, Biotechnol.Bioprocess Eng., 11, 522, 2006
  12. Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, Kim SW, Bioresour. Technol., 102(2), 2105, 2011
  13. Lee JH, Kim SB, Park C, Kim SW, Bioresour. Technol., 101, S66, 2010
  14. Lee JH, Kwong CH, Kang JW, Park C, Tae B, Kim SW, Appl. Biochem. Biotechnol., 156, 24, 2009
  15. Lee JH, Lee DH, Lim JS, Um BH, Park C, Kim SW, J. Microbiol. Biotechnol., 18, 1927, 2008
  16. Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW, Korean J. Chem. Eng., 30(2), 405, 2013
  17. Zaidi A, Gainer JL, Carta G, Mrani A, Kadiri T, Belarbi Y, Mir A, J. Biotechnol., 93, 209, 2002
  18. Mukesh D, Jadhav S, Banerji AA, Thakkar K, Bevinakatti HS, J. Chem. Technol. Biotechnol., 69(2), 179, 1997
  19. Sulaiman AZ, Fan WL, Lim SJ, Proc. Biochem., 42, 951, 2007
  20. Rosa CD, Morandim MB, Ninow JL, Oliveira D, Treichel H, Oliveira JV, J. Supercrit. Fluids, 47(1), 49, 2008
  21. Madras G, Kolluru C, Kumar R, Fuel, 83(14-15), 2029, 2004
  22. Guo Z, Xu X, Green Chem., 8, 54, 2006
  23. Habulin M, Knez Z, J. Chem. Technol. Biotechnol., 76(12), 1260, 2001
  24. Oliveira D, Oliveira JV, J. Supercrit. Fluids, 19(2), 141, 2001