Issue
Korean Journal of Chemical Engineering,
Vol.30, No.6, 1241-1247, 2013
Removal of nitric oxide and sulfur dioxide from flue gases using a FeII-ethylenediamineteraacetate solution
The combined absorption of NO and SO2 into the Fe(II)-ethylenediamineteraacetate(EDTA) solution has been realized. Activated carbon is used to catalyze the reduction of FeIII-EDTA to FeII-EDTA to maintain the ability to remove NO with the Fe-EDTA solution. The reductant is the sulfite/bisulfite ions produced by SO2 dissolved into the aqueous solution. Experiments have been performed to determine the effects of activated carbon of coconut shell, pH value, temperature of absorption and regeneration, O2 partial pressure, sulfite/bisulfite and chloride concentration on the combined elimination of NO and SO2 with FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon. The experimental results indicate that NO removal efficiency increases with activated carbon mass. There is an optimum pH of 7.5 for this process. The NO removal efficiency increases with the liquid flow rate but it is not necessary to increase the liquid flow rate beyond 25 ml min.1. The NO removal efficiency decreases with the absorption temperature as the temperature is over 35 ℃. The Fe2+ regeneration rate may be speeded up with temperature. The NO removal efficiency decreases with O2 partial pressure in the gas streams. The NO removal efficiency is enhanced with the sulfite/bisulfite concentration. Chloride does not affect the NO removal. Ca(OH)2 and MgO slurries have little influence on NO removal. High NO and SO2 removal efficiencies can be maintained at a high level for a long period of time with this heterogeneous catalytic process.
[References]
  1. Pereira CJ, Amiridis MD, In NOx control from stationary sources, Pereira CJ, Amiridis MD, Eds., ACS Symp. Ser. 552; American Chemical Society, Washington, DC, 552, 1, 1995
  2. Nakajima F, Hamada I, Catal. Today, 29(1-4), 109, 1996
  3. Huang BC, Huang R, Jin DJ, Ye DQ, Catal. Today, 126(3-4), 279, 2007
  4. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL, Catal. Today, 100(3-4), 217, 2005
  5. Raj A, Le THN, Kaliaguine S, Auroux A, Appl. Catal. B: Environ., 15(3-4), 259, 1998
  6. Chang SG, Littlejohn D, Liu DK, Ind. Eng. Chem. Res., 27, 2156, 1988
  7. Pham EK, Chang SG, Nature, 369(6476), 139, 1994
  8. Hishinuma NY, Kaji R, Akimoto H, Nakajima F, Mor T, Kamo T, Arikawa Y, Nozawa S, Bull. Chem. Soc. Jpn., 52, 2863, 1979
  9. Sada E, Kumazawa H, Ind. Eng. Chem. Pro. Des. Dev., 19, 377, 1980
  10. Yih SM, Lii CW, J. Chem. Eng., 42, 145, 1989
  11. Gambardella F, Winkelman JGM, Heeres HJ, Chem. Eng. Sci., 61(21), 6880, 2006
  12. Wang L, Zhao WR, Wu ZB, Chem. Eng. J., 132(1-3), 227, 2007
  13. Kurimura Y, Ochiai R, Matsuura N, Bull. Chem. Soc. Jpn., 41, 2234, 1968
  14. Zang V, Eldik RV, Inorg. Chem., 29, 1705, 1990
  15. Wubs HJ, Beenackers AACM, Ind. Eng. Chem. Res., 32, 2580, 1993
  16. Teramoto M, Hiramimne SI, J. Chem. Eng., 11, 450, 1978
  17. Biao ZBA, Wang L, Zhao WR, Chem. Eng. J., 140(1-3), 130, 2008
  18. Gambardella F, Sanchez LMG, Ganzeveld KJ, Winkelman JGM, Heeres HJ, Chem. Eng. J., 116(1), 67, 2006
  19. Maas P, Brink P, Klapwijk B, Lens P, Chemosphere., 7, 243, 2009
  20. Manconi I, Maas P, Lens PNL, Nitric Oxide., 15, 40, 2006
  21. Singoredjo L, Kapteijn F, Moulijn JA, Martin-Martinez JM, Boehm HP, Carbon., 31, 213, 1993
  22. Alvarez PM, Beltran FJ, Masa FJ, Pocostales JP, Appl.Catal. B: Environ., 92, 293, 2009
  23. Muniz J, Marban G, Fuertes AB, Appl. Catal. B: Environ., 27(1), 27, 2000