Issue
Korean Journal of Chemical Engineering,
Vol.30, No.6, 1222-1228, 2013
Preparation and properties of sulfated zirconia for hydrolysis of ethyl lactate
Sulfated zirconia catalysts are proposed for the reversible hydrolysis of ethyl lactate instead of liquid acids. Sulfated zirconia catalysts were prepared by precipitation-impregnation method. The zirconium hydroxide was produced from zirconium oxychloride by adding aqueous ammonia and then impregnated in sulfuric acid. The solid samples were obtained by filtration and evaporation of the mixtures, respectively. After the samples were calcined, the sulfated zirconia catalysts were prepared. The results showed that the catalyst prepared by evaporation has higher catalytic activity. The physicochemical characteristics of the sulfated zirconia catalysts were studied by thermal analysis, X-ray powder diffraction (XRD), temperature programmed desorption of ammonia (NH3-TPD) and N2 adsorption-desorption, respectively. By the precipitation-impregnation-evaporation method, the optimal sulfated zirconia catalyst of tetragonal phase was prepared under liquid-solid ratio of 5ml/g, 1 mol/L of H2SO4 and calcination at 650 ℃ for 3 h. The conversion of the ethyl lactate was 87.8% in 3 h at 85 ℃ with the catalyst loading 2 wt% and initial molar ratio of water to ethyl lactate 20 : 1.
[References]
  1. Wee YJ, Kim JN, Ryu HW, Food Technol. Biotechnol., 44, 163, 2006
  2. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J, Ind. Eng. Chem. Res., 43(9), 2049, 2004
  3. Martins RL, Schmal M, Appl. Catal. A: Gen., 308, 143, 2006
  4. Peters TA, Benes NE, Keurentjes JTF, Appl. Catal. A: Gen., 317(1), 113, 2007
  5. Izci A, Bodur F, React. Funct. Polym., 67, 1458, 2007
  6. Peters TA, Benes NE, Holmen A, Keurentjes JTF, Appl. Catal. A: Gen., 297(2), 182, 2006
  7. Suna XH, Wang QH, Zhao WC, Ma HZ, Sakata K, Sep. Purif. Technol., 49(1), 43, 2006
  8. Suwannakarn K, Lotero E, Goodwin JG, Lu CQ, J. Catal., 255(2), 279, 2008
  9. Katada N, Tsubaki T, Niwa M, Appl. Catal. A: Gen., 340(1), 76, 2008
  10. Qi XH, Watanabe M, Aida TM, Smith RL, Catal. Commun., 10, 1771, 2009
  11. Lohitharn N, Goodwin JG, J. Catal., 245(1), 198, 2007
  12. Deutsch J, Prescott HA, Muller D, Kemnitz E, Lieske H, J. Catal., 231(2), 269, 2005
  13. Yadav GD, Mehta PH, Ind. Eng. Chem. Res., 33(9), 2198, 1994
  14. Saravanamurugan S, Riisager A, Catal. Commun., 17, 71, 2012
  15. Li WX, Ni YX, Xing WH, Adv. Mater. Res., 233, 1529, 2011
  16. Matsuhashi H, Nakamura H, Ishihara T, Iwamoto S, Kamiya Y, Kobayashi J, Kubota Y, Yamada T, Matsuda T, Matsushita K, Eds., Appl. Catal. A: Gen., 360, 89, 2009
  17. Morterra C, Cerrato G, Signoretto M, Catal. Lett., 41(1-2), 101, 1996
  18. Guan DH, Fan MQ, Wang J, Zhang Y, Liu Q, Jing XY, Mater. Chem. Phys., 122(1), 278, 2010
  19. Reddy BM, Sreekanth PM, Lakshmanan P, Khan A, J. Mol. Catal. A-Chem., 244(1-2), 1, 2006
  20. Arata K, Hino M, Mater. Chem. Phys., 26, 213, 1990
  21. Srinivasan R, Davis BH, Prepr. Am. Chem. Soc. Div. Petrol.Chem., 36, 635, 1991
  22. Farcasiu D, Li JQ, Cameron S, Appl. Catal. A: Gen., 154(1-2), 173, 1997
  23. Kang ZJ, Ma HZ, Wang B, Ind. Eng. Chem. Res., 48(20), 9346, 2009
  24. Kirumakki SR, Nagaraju N, Chary KV, Appl. Catal. A: Gen., 299, 185, 2006
  25. Ahmed AI, El-Hakam SA, Samra SE, EL-Khouly AA, Khder AS, Colloids Surf. A: Physicochem. Eng. Aspects., 317, 62, 2008