Issue
Korean Journal of Chemical Engineering,
Vol.30, No.6, 1213-1221, 2013
Optimal oxygen concentration strategy through an isothermal oxidative coupling of methane plug flow reactor to obtain a high yield of C2 hydrocarbons
An optimal oxygen concentration trajectory in an isothermal OCM plug flow reactor for maximizing C2 production was determined by the algorithm of piecewise linear continuous optimal control by iterative dynamic programming (PLCOCIDP). The best performance of the reactor was obtained at 1,085 K with a yield of 53.9%; while, at its maximum value, it only reached 12.7% in case of having no control on the oxygen concentration along the reactor. Also, the effects of different parameters such as reactor temperature, contact time, and dilution ratio (N2 /CH4) on the yield of C2 hydrocarbons and corresponding optimal profile of oxygen concentration were studied. The results showed an improvement of C2 production at higher contact times or lower dilution ratios. Furthermore, in the process of oxidative coupling of methane, controlling oxygen concentration along the reactor was more important than controlling the reactor temperature. In addition, oxygen feeding strategy had almost no effect on the optimum temperature of the reactor. Finally, using the optimal oxygen strategy along the reactor has more effect on ethylene selectivity compared to ethane.
[References]
  1. Thybaut JW, Sun JJ, Olivier L, Van Veen AC, Mirodatos C, Marin GB, Catal. Today, 159(1), 29, 2011
  2. Lu YP, Dixon AG, Moser WR, Ma YH, Chem. Eng. Sci., 55(21), 4901, 2000
  3. Traykova M, Davidova N, Tsaih JS, Weiss AH, Appl. Catal. A: Gen., 169(2), 237, 1998
  4. Onsager OT, Lodeng R, Soraker P, Anundskaas A, Helleborg B, Catal. Today., 4, 355, 1989
  5. Keller GE, Bhasin MM, J. Catal., 73, 9, 1982
  6. Sung JS, Choo KY, Kim TH, Greish A, Glukhov L, Finashina E, Kustov L, Appl. Catal. A: Gen., 380(1-2), 28, 2010
  7. Gholipour Z, Malekzadeh A, Hatami R, Mortazavi Y, Khodadadi AA, J. Nat. Gas Chem., 19, 35, 2010
  8. Ahari JS, Sadeghi MT, Pashne SZ, J. Taiwan Inst. Cheme.E., 42, 751, 2011
  9. Farooji NR, Vatanil A, Mokhtari S, J. Nat. Gas Chem., 19, 385, 2010
  10. Ghiasi M, Malekzadeh A, Hoseini S, Mortazavi Y, Khodadadi A, Talebizadeh A, J. Nat. Gas Chem., 20, 428, 2011
  11. Olivier L, Haag S, Mirodatos C, van Veen AC, Catal. Today., 142, 34, 2009
  12. Bhatia S, Thien CY, Mohamed AR, Chem. Eng. J., 148(2-3), 525, 2009
  13. Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(24), 5143, 2009
  14. Yaghobi N, Ghoreishy MH, J. Nat. Gas Chem., 18, 39, 2009
  15. Tye CT, Mohamed AR, Bhatia S, Chem. Eng. J., 87(1), 49, 2002
  16. Istadi, Amin NAS, Fuel Process. Technol., 87(5), 449, 2006
  17. Amin NAS, Pheng SE, Chem. Eng. J., 116(3), 187, 2006
  18. Kundu PK, Zhang Y, Ray AK, Chem. Eng. Sci., 64(19), 4137, 2009
  19. Rojnuckarin A, Floudas CA, Rabitz H, Yetter RA, Ind. Eng. Chem. Res., 35(3), 683, 1996
  20. Faliks A, Yetter RA, Floudas CA, Hall R, Rabitz H, J. Phys. Chem. A, 104(46), 10740, 2000
  21. Luus R, Okongwu ON, Chem. Eng. J., 75(1), 1, 1999
  22. Nouralishahi A, Pahlavanzadeh H, Daryan JT, Fuel Process. Technol., 89(7), 667, 2008
  23. Stansch Z, Kinetics for oxidative coupling of methane over La2O3/CaO catalyst, Ph.D Theses, Ruher University Bochum, Bochum, 1997
  24. Chiappetta G, Clarizia G, Drioli E, Chem. Eng. J., 136(2-3), 373, 2008
  25. Karafyllis I, Daoutidis P, Comput. Chem. Eng., 26(7-8), 1087, 2002
  26. Daneshpayeh M, Khodadadi A, Mostoufi N, Mortazavi Y, Sotudeh-Gharebagh R, Talebizadeh A, Fuel Process. Technol., 90(3), 403, 2009
  27. Stansch Z, Mleczko L, Baerns M, Ind. Eng. Chem. Res., 36(7), 2568, 1997
  28. Santamaria J, Menendez M, Pena J, Barahona A, Catal. Today., 13, 353, 1992
  29. Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583, 1997
  30. Androulakis IP, Reyes SC, AIChE J., 45(4), 860, 1999
  31. Su YS, Ying JY, Green WH, J. Catal., 218(2), 321, 2003
  32. Daneshpayeh M, Mostoufi N, Khodadadi A, Sotudeh-Gharebagh R, Mortazavi Y, Energy Fuels, 23(7), 3745, 2009