Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 1162-1170, 2013
Pyrolytic characteristics of Jatropha seedshell cake in thermobalance and fluidized bed reactors
Pyrolytic kinetic parameters of Jatropha seedshell cake (JSC) were determined based on reaction mechanism approach under isothermal condition in a thermobalance reactor. Avrami-Erofeev reaction model represents the pyrolysis conversion of JSC waste well with activation energy of 36.4 kJ mol^(-1) and frequency factor of 9.18 s^(-1). The effects of reaction temperature, gas flow rate and feedstock particle size on the products distribution have been determined in a bubbling fluidized bed reactor. Pyrolytic bio-oil yield increases up to 42 wt% at 500 ℃ with the mean particle size of 1.7 mm and gas flow rate higher than 3Umf, where the maximum heating value of bio-oil was obtained. The pyrolytic bio-oil is characterized by more oxygen, lower HHVs, less sulfur and more nitrogen than petroleum fuel oils. The pyrolytic oil showed plateaus around 360 ℃ in distribution of components’ boiling point due to high yields of fatty acid and glycerides.
[References]
  1. Kim YM, Lee HW, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK, Korean J. Chem. Eng., 28(10), 2012, 2011
  2. Kim SW, Koo BS, Ryu JW, Lee JS, Kim CJ, Lee DH, Kim GR, Choi S, Fuel Process. Technol., 108, 118, 2013
  3. Islam MN, Zailani R, Ani FN, Renew. Energy, 17(1), 73, 1999
  4. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164, 2010
  5. Yanik J, Kommayer C, Saglam M, Yuksel M, Fuel Process. Technol., 88(10), 942, 2007
  6. Caglar A, Demirbas A, Energy Conv. Manag., 43(4), 489, 2002
  7. Encinar JM, Gonzalez JF, Martinez G, Gonzalez JM, Fuel Process. Technol., 89(12), 1448, 2008
  8. Sricharoenchaikul V, Atong D, J. Anal. Appl. Pyrol., 85, 155, 2009
  9. Vyazovkin S, Wight CA, Thermochim. Acta., 340-1, 53, 1999
  10. Kim YC, Kim S, Chung SH, J. Ind. Eng. Chem., 11(6), 857, 2005
  11. Kwon TW, Kim SD, Fung DPC, Fuel., 67, 530, 1988
  12. Zhang HY, Xiao R, Huang H, Xiao G, Bioresour. Technol., 100(3), 1428, 2009
  13. Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186, 2009
  14. Xu R, Ferrante L, Briens C, Berruti F, J. Anal. Appl. Pyrol., 86, 58, 2009
  15. Di Blasi C, Signorelli G, Di Russo C, Rea G, Ind. Eng. Chem. Res., 38(6), 2216, 1999
  16. Luo ZY, Wang S, Liao YF, Zhou JS, Gu YL, Cen KF, Biomass Bioenerg., 26(5), 455, 2004
  17. Sonobe T, Worasuwannarak N, Pipatmanomai S, Fuel Process. Technol., 89(12), 1371, 2008
  18. Piskorz J, Majerski P, Radlein D, Scott DS, Bridgwater AV, J. Anal. Appl. Pyrol., 46, 15, 1998
  19. Putun AE, Ozcan A, Putun E, J. Anal. Appl. Pyrol., 52, 33, 1999
  20. CONTI L, SCANO G, BOUFALA J, Biomass Bioenerg., 7(1-6), 291, 1994
  21. Mason DM, Gandhi KN, Fuel Process. Technol., 7, 11, 1983
  22. Park HJ, Jeon JK, Jung KY, Ko YS, Sohn JM, Park YK, Korean Chem. Eng. Res., 45(4), 340, 2007