Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 1097-1104, 2013
Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations
Cephalosporin C (CPC) fermentation by Acremonium chrysogenum is an extremely high oxygen-consuming process and oxygen transfer rate in a bioreactor directly affects fermentation performance. In this study, fluid dynamics and oxygen transfer in a 7 L bioreactor with different impellers combinations were simulated by computational fluid dynamics (CFD) model. Based on the simulation results, two impeller combinations with higher oxygen transfer rate (KLa) were selected to conduct CPC fermentations, aiming at achieving high CPC concentration and low accumulation of major by-product, deacetoxycephalosporin (DAOC). It was found that an impeller combination with a higher KLa and moderate shear force is the prerequisite for efficient CPC production in a stirred bioreactor. The best impeller combination, which installed a six-bladed turbine and a four-pitched-blade turbine at bottom and upper layers but with a shortened impellers inter-distance, produced the highest CPC concentration of 35.77 g/L and lowest DAOC/ CPC ratio of 0.5%.
[References]
  1. Kozma J, Karaffa L, J. Biotechnol., 48, 59, 1996
  2. Hilgendorf P, Diekmann H, Heiser V, Thoma M, Appl. Microbiol. Biotechnol., 27, 247, 1987
  3. Rollins MJ, Jensen SE, Wolfe S, Westlake DW, Enzyme Microb. Technol., 12, 40, 1990
  4. Zhou W, Holzhauer-Rieger K, Dors M, Schugerl K, Enzyme Microbiol. Technol., 14, 848, 1992
  5. Yang A, Dong HL, Liu G, J. Ind. Microbiol. Biotechnol., 39, 269, 2012
  6. Mishra P, Srivastava P, Kundu S, World J. Microbiol. Biotechnol., 21, 525, 2005
  7. Basch J, Chiang SJ, J. Ind. Microbiol. Biotechnol., 20, 344, 1998
  8. DeMondena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF, Biotechnol., 11, 926, 1993
  9. Nienow AW, Appl. Mech. Rev., 51, 3, 1998
  10. Papagianni M, Biotechnol. Adv., 22, 189, 2004
  11. Metz B, deBruijn EW, van Suijdam JC, Biotechnol. Bioeng., 23, 149, 1981
  12. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J, Biotechnol. Prog., 11(1), 93, 1995
  13. Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 11, 1990
  14. Rahimi M, Kakekhani A, Alsairafi AA, Korean J. Chem. Eng., 27(4), 1150, 2010
  15. Dhanasekharan KM, Sanyal J, Jain A, Haidari A, Chem. Eng. Sci., 60(1), 213, 2005
  16. Raimondi MT, Moretti M, Cioffi M, Giordano C, Boschetti F, Lagana K, Pietrabissa R, Biorheology., 43, 215, 2006
  17. Santos-Moreau V, Brunet-Errard L, Rolland M, Chem. Eng.Sci., 207, 596, 2012
  18. Williams KA, Saini S, Wick TM, Biotechnol. Prog., 18(5), 951, 2002
  19. Marten MR, Wenger KS, Khan SA, Rheology mixing time, and regime analysis for a production-scale Aspergillus oryzae fermentation,in, A.W. Nienow (Ed.), Bioreactor and Bioprocess Fluid Dynamics, BHR Group, Edinburgh, 1997
  20. Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094, 2008
  21. Ranade VV, Bourne JR, Joshi JB, Chem. Eng. Sci., 46, 1883, 1991
  22. Xia JY, Wang SJ, Zhang SL, Zhong JJ, Biochem. Eng.J., 38, 406, 2007
  23. Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59(12), 2489, 2004
  24. Xia JY, Wang SJ, Liang SL, Zhong JJ, Biochem. Eng. J., 38, 406, 2008
  25. Kumaresan T, Joshi JB, Chem. Eng. J., 115(3), 173, 2006
  26. Abrardi V, Rovero G, Baldi G, Sicardi S, Conti R, Chem. Eng.Res. Des., 68, 516, 1990
  27. Ahmed SU, Ranganathan P, Pandey A, Sivaraman S, J. Biosci.Bioeng., 6, 588, 2010
  28. Tollnick C, Seidel G, Beyer M, Schguerl K, Adv. Biochem.Eng. Biotechnol., 86, 1, 2004
  29. Chiang SJ, J. Ind. Microbiol. Biotechnol., 31, 99, 2004
  30. Elander RP, Appl. Microbiol. Biotechnol., 61(5-6), 385, 2003
  31. Kim JH, Lim JS, Kim CH, Kim SW, Lett. Appl. Microbiol., 40, 307, 2005
  32. Matsumura M, Imanaka T, Yoshida T, Taguchi H, J. Ferment.Technol., 58, 197, 1980
  33. Basak S, Velayudhan A, Ladisch MR, Biotechnol. Prog., 11(6), 626, 1995