Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 1023-1028, 2013
Stability analysis of compositional convection in a mushy layer in the time-dependent solidification system
Instabilities of convection in a mushy layer with a permeable interface underlying a liquid layer are studied in the time-dependent solidification system in which a binary melt cooled from below. The self-similar stability equations in the liquid and mushy layers are derived by propagation theory. The onset of mushy-layer-mode convection is examined considering the variation of permeability with porosity in the mushy layer. The numerical results show that the critical Darcy-Rayleigh number defined in terms of the mean permeability increases with increasing the concentration ratio and decreases with increasing the superheat. When the concentration ratio is small, a small convective cell appears in the vicinity of the liquid-mush interface. The influences of various non-uniform permeability models on the stability of compositional convection are discussed.
[References]
  1. Chung CA, Worster MG, J. Fluid Mech., 455, 387, 2002
  2. O’Rourke JG, Riggs AJE, Guertler CA, Miller PW, Padhi CM, Popelka MM, Wells AJ, West AC, Zhong JQ, Wettlaufer JS, Phys. Fluids., 24, 103305, 2012
  3. Whiteoak SH, Huppert HE, Worster MG, J. Cryst. Growth, 310(15), 3545, 2008
  4. Guba P, Worster MG, J. Fluid Mech., 553, 419, 2006
  5. Butler SL, Phys. Fluids., 23, 016602, 2011
  6. Fowler AC, IMA J. Appl. Math., 35, 159, 1985
  7. Worster MG, J. Fluid Mech., 237, 649, 1992
  8. Chen F, Lu JW, Yang TL, J. Fluid Mech., 276, 163, 1994
  9. Chung CA, Chen F, J. Fluid Mech., 412, 93, 2000
  10. Chen F, Chung CA, Lai MH, Phys. Fluids., 14, 1295, 2002
  11. Emms PW, Fowler AC, J. Fluid Mech., 262, 111, 1994
  12. Tait S, Jaupart C, J. Geophys. Res., 97, 6735, 1992
  13. Riahi DN, Mechanics Research Communications., 39, 18, 2012
  14. Amberg G, Homsy GM, J. Fluid Mech., 252, 79, 1993
  15. Chung CA, Chen F, J. Fluid Mech., 408, 53, 2000
  16. Srivastava AK, Bhadauria BS, Communications in Nonlinear Science and Numerical Simulation., 16, 3548, 2011
  17. Riahi DN, J. Fluid Mech., 553, 389, 2006
  18. Govender S, Transp. Porous Media, 67(3), 431, 2007
  19. Peppin SSL, Huppert HE, Worster MG, J. Fluid Mech., 599, 465, 2008
  20. Hwang IG, Choi CK, J. Cryst. Growth, 267(3-4), 714, 2004
  21. Kim MC, Choi CK, Korean J. Chem. Eng., 23(6), 874, 2006
  22. Kim MC, Korean J. Chem. Eng., 27(3), 741, 2010
  23. Kim MC, Yoon DY, Cho E, Korean J. Chem. Eng., 26(6), 1461, 2009
  24. Hwang IG, Choi CK, Korean J. Chem. Eng., 25(2), 199, 2008
  25. Hwang IG, Choi CK, Korean J. Chem. Eng., 26(4), 930, 2009
  26. Choi CK, Park JH, Kim MC, Lee JD, Kim JJ, David EJ, Int. J. Heat Mass Transf., 47(19-20), 4377, 2004
  27. Bhatta D, Muddamallappa MS, Riahi DN, Transp. Porous Media, 82(2), 385, 2010
  28. Nandapurkar P, Poirier DR, Heinrich JC, Felicelli S, Metall. Trans., 20B, 711, 1989
  29. Happel J, Brenner H, Low reynolds number hydrodynamics, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1986
  30. Katz RF, Worster MG, J. Comput. Phys., 22, 9823, 2008