Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 977-987, 2013
Biological conversion of methane to methanol
The conversion of methane to methanol is important to economic utilization of natural/shale gas. Methanol is a valuable liquid fuel and raw material for various synthetic hydrocarbon products. Its industrial production is currently based on a two-step process that is energy-intensive and environmentally unfriendly, requiring high pressure and temperature. The biological oxidation of methane to methanol, based on methane monooxygenase activity of methanotrophic bacteria, is desirable because the oxidation is highly selective under mild conditions, but conversion rate and yield and stability of catalytic activity should be improved up to an industrially viable level. Since methanotrophic bacteria produce methanol as only a precursor of formaldehyde that is then used to synthesize various essential metabolites, the direct use of bacteria seems unsuitable for selective production of a large amount of methanol. There are two types of methane monooxygenase: soluble (sMMO) and particulate (pMMO) enzyme. sMMO consisting of three components (reductase, hydroxylase, and regulatory protein) features an (αβγ)2 dimer architecture with a di-iron active site in hydroxlase. pMMO, a trimer (pmoA, pmoB, and pmoC) in an α3β3γ3 polypeptide arrangement is a copper enzyme with a di-copper active site located in the soluble domain of pmoB subunit. Since the membrane transports electrons well and delivers effectively methane with increased solubility in the lipid bilayer, pMMO seems more rationally designed enzyme in nature than sMMO. The engineering/evolution/modification of MMO enzymes using various biological and chemical techniques could lead to an optimal way to reach the ultimate goal of technically and economically feasible and environmentally friendly oxidation of methane. For this, multidisciplinary efforts from chemical engineering, protein engineering, and bioprocess research sectors should be systematically combined.
[References]
  1. BP Statistical Review of World Energy, June, 2012
  2. Conti JJ, Holtberg PD, Beamon JA, Napolitano SA, Schaal AM, Turnure JT, Annual Energy Outlook 2012, U.S. Energy Information Administration, Washington DC, 2012
  3. Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T, Science., 259, 340, 1993
  4. Culpepper MA, Rosenzweig AC, Crit. Rev. Biochem. Mol., 47, 483, 2012
  5. Khoshtinat M, Amin NAS, Noshadi I, World Academy of Science, Eng. & Technol., 38, 354, 2010
  6. Olah GA, Angew. Chem. Int. Ed., 44, 2636, 2005
  7. Geerts JWMH, Hoebink JHBJ, van der Wiele K, Catal.Today., 6, 613, 1990
  8. Shilov AE, Shul'pin GB, Chem. Rev., 97(8), 2879, 1997
  9. Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Appl.Catal. A-gen., 57, 45, 1990
  10. Walker GS, Lapszewicz JA, Foulds GA, Catal. Today., 21, 519, 1994
  11. HALL TJ, HARGREAVES JSJ, HUTCHINGS GJ, JOYNER RW, TAYLOR SH, Fuel Process. Technol., 42(2-3), 151, 1995
  12. Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW, Catal. Today, 42(3), 217, 1998
  13. Benlounes O, Mansouri S, Rabia C, Hocine S, J. Nat. Gas.Chem., 17, 309, 2008
  14. Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Angew. Chem. Int. Ed., 51, 5129, 2012
  15. Rahim MHA, Forde MM, Jenkins RL, Hammond C, He Q, Angew. Chem. Int. Ed., 52, 1280, 2013
  16. Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA, Angew. Chem. Int. Ed., 116, 4726, 2004
  17. Gesser HD, Hunter NR, Prakash CB, Chem. Rev., 85, 235, 1985
  18. BHARADWAJ SS, SCHMIDT LD, Fuel Process. Technol., 42(2-3), 109, 1995
  19. Foster NR, Appl. Catal. A-gen., 19, 1, 1985
  20. Zhang Q, He D, Zhu Q, J. Nat. Gas. Chem., 17, 24, 2008
  21. Zhang Q, He D, Zhu Q, J. Nat. Gas. Chem., 12, 81, 2003
  22. Palkovits R, Antonietti M, Kuhn P, Thomas A, Schth F, Angew. Chem. Int. Ed., 48, 6909, 2009
  23. Casey PS, Mcallister T, Foger K, Ind. Eng. Chem. Res., 33(5), 1120, 1994
  24. Zhou LM, Xue B, Kogelschatz U, Eliasson B, Plasma Chem. Plasma Process., 18(3), 375, 1998
  25. Chen L, Zhang XW, Huang L, Lei LC, Chem. Eng. Process., 48(8), 1333, 2009
  26. Larkin DW, Zhou LM, Lobban LL, Mallinson RG, Ind. Eng. Chem. Res., 40(23), 5496, 2001
  27. Lieberman RL, Rosenzweig AC, Crit. Rev. Biochem. Mol., 39, 147, 2004
  28. Whittenbury R, Phillips KC, Wilkinson JF, J. Gen. Microbiol., 61, 205, 1970
  29. Hanson RS, Hanson TE, Microbiol. Rev., 60, 439, 1996
  30. Dedysh SN, Panikov NS, Liesack W, Groβkopf R, Zhou J, Tiedje JM, Science., 282, 281, 1998
  31. Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA, Curr. Microbiol., 35(5), 257, 1997
  32. Sorokin DY, Jones BE, Kuenen JG, Extremophiles., 4, 145, 2000
  33. Bodrossy L, Kovaecs KL, McDonald IR, Murrell JC, Fems. Microbiol. Lett., 170, 335, 1999
  34. Bowman JP, McCammon SA, Skerratt JH, Microbiology., 143, 1451, 1997
  35. Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, J. Bacteriol., 194, 551, 2012
  36. Stein LY, Yoon S, Semrau JD, DiSpirito AA, J. Bacteriol., 192, 6497, 2010
  37. Miyaji A, Method. Enzymol., 495, 211, 2011
  38. Gilbert B, McDonald IR, finch R, Stafford GP, Nielsen AK, Murrell JC, Appl. Environ. Microb., 66, 966, 2000
  39. Stein LY, Bringel F, DiSpirito AA, Han S, J. Bacteriol., 193, 2668, 2011
  40. McDonald IR, Uchiyama H, Kambe S, Yagi O, Murrell JC, Appl. Environ. Microb., 63, 1898, 1997
  41. Chen Y, Crombie A, Rahman MT, Dedysh SN, J. Bacteriol., 192, 3840, 2010
  42. Ward N, Larsen Ø, Sakwa J, Bruseth L, Plos. Biol., 2, 1617, 2004
  43. Colby J, Stirling DI, Dalton H, Biochem. J., 165, 395, 1977
  44. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ, Angew. Chem. Int. Ed., 40, 2782, 2001
  45. Balasubramanian R, Rosenzweig AC, Accounts. Chem. Res., 40, 573, 2007
  46. Hakemian AS, Rosenzweig AC, Annu. Rev. Biochem., 76, 223, 2007
  47. Nielsen AK, Gerdes K, Degn H, Murrell JC, Microbiology., 142, 1289, 1996
  48. Patel RN, Hou CT, Laskin AI, Felix A, Appl. Environ.Microb., 44, 1130, 1982
  49. Green J, Dalton H, J. Biol. Chem., 260, 15795, 1985
  50. Fox BG, Froland WA, Dege JE, Lipscomb JD, J. Biol.Chem., 264, 10023, 1989
  51. Friedle S, Reisner E, Lippard SJ, Chem. Soc. Rev., 39, 2768, 2010
  52. Tinberg CE, Lippard SJ, Accounts. Chem. Res., 44, 280, 2011
  53. Smith SM, Rawat S, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC, Biochemistry., 50, 10231, 2011
  54. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC, Nature., 465, 115, 2010
  55. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Nature., 450, 879, 2007
  56. Hyman MR, Wood PM, Biochem. J., 212, 31, 1983
  57. Scheutz C, Kjeldsen P, Bogner JE, Visscher AD, Gebert J, Hilger HA, Huber-Humer M, Spokas K, Waste. Manage. Res., 27, 409, 2009
  58. Jiang Y, Wilkins PC, Dalton H, Biochim. Biophys. Acta., 1163, 105, 1993
  59. Jiang Y, Dalton H, Biochim. Biophys. Acta., 1201, 76, 1994
  60. Yoshimoto T, Takahashi K, Nishimura H, Ajima A, Tamaura Y, Inada Y, Biotechnol. Lett., 6, 337, 1984
  61. Inada Y, Nishimura H, Takahashi K, Yoshimoto T, Saha AR. Saito Y, Biochem. Biophys. Res. Commun., 131, 532, 1984
  62. Takahashi K, Kodera Y, Yoshimoto T, Ajima A, Matsushima A, Inada Y, Biochem. Biophys. Res. Commun., 131, 532, 1985
  63. Matsushima A, Okada M, Inada Y, Febs Lett., 178, 275, 1984
  64. Gaertner HF, Puigserver AJ, Prot. Struct. Funct. Genet., 3, 130, 1988
  65. Babonneau MT, Jacquier R, Lazaro R, Viallefont P, Tetrahedron Lett., 30, 2787, 1989
  66. Pina C, Clark D, Blanch H, Biotechol. Techniques., 3, 333, 1989
  67. Gaertner HF, Puigserver AJ, Eur. J. Biochem., 181, 207, 1989
  68. Ljunger G, Adlercreutz P, Mattiasson B, Biocatalysis., 7, 279, 1993
  69. Abuchowski A, Davis FF, Biochim. Biophys. Acta., 578, 41, 1979
  70. Ferjancic A, Puigserver AJ, Gaertner HF, Biotechnol. Lett., 10, 101, 1988
  71. Lee H, Takahashi K, Kodera Y, Owada K, Tsuzuki T, Matsushima A, Inada Y, Biotechnol. Lett., 10, 407, 1988
  72. Souppe J, Urrutigoity M, Levesoue G, Biochim. Biophys. Acta., 957, 254, 1988
  73. Souppe J, Urrutigoity M, Levesoue G, New J. Chem., 12, 503, 1989
  74. Takahashi K, Ajima A, Yoshimoto T, Inada Y, Biochem. Biophys. Res. Commun., 125, 761, 1984
  75. Takahashi K, Nishimura H, Yoshimoto T, Saito Y, InadaY, Biochem. Biophys. Res. Commun., 121, 261, 1984
  76. Takahashi K, Nishimura H, Yoshimoto T, Okada M, Ajima A, Matsushima A, Tamaura Y, Saito Y, Inada Y, Biotechnol. Lett., 6, 765, 1984
  77. Urrutigoity M, Souppe J, Biocatalysis., 2, 145, 1989
  78. Wirth P, Souppe J, Tritsch D, Biellmann JF, Bioorganic Chem., 19, 133, 1991
  79. Yoshimoto T, Ritani A, Ohwada K, Takahashi K, Kodera Y, Matsushima A, Saito Y, Inada Y, Biochem. Biophys. Res. Commun., 148, 876, 1987
  80. Glieder A, Farinas ET, Arnold FH, Nature., 20, 1135, 2002
  81. Lee SJ, McCormick MS, Lippard SJ, Cho US, Nature, 494(7437), 380, 2013
  82. Choi DW, Antholine WE, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA, Microbiology., 151, 3417, 2005
  83. Yu SSF, Chen KHC, Tseng MYH, Wang YS, Tseng CF, Chen YJ, Huang DS, Chan SI, J. Bacteriol., 185, 5915, 2003
  84. Gou Z, Xing XH, Luo M, Jiang H, Han B, Wu H, Wang L, Zhang F, FEMS Microbiol. Lett., 263, 136, 2006