Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 997-1007, 2013
Eco-efficiency and control loop configuration for recycle systems
To integrate measurements of eco-efficiency with control loop configuration has become an important topic since all industrial processes/plants are requested to increase their eco-efficiency. The exergy eco-efficiency factor, a new measure of eco-efficiency for control loop configuration, has been developed recently [1]. The exergy eco-efficiency factor is based on the thermodynamic concept of exergy, which can be used to analyze a process in terms of its efficiency. The combination of the relative gain array (RGA), NI, CN, dynamic RGA, and the exergy eco-efficiency factor will help guide the process designer to find the optimal control design with low operating cost/eco-efficiency. In this paper, we validate the proposed exergy eco-efficiency factor for processes with recycles which are very common industrially.
[References]
  1. Munir MT, Yu W, Young BR, Plant-wide control: Eco-efficiency and control loop configuration, ISA Transactions, 52(1), 162, 2013
  2. Seborg DE, Edgar TF, Mellichamp DA, Process dynamics and control, New York: John Wiley & Sons, 1989
  3. Svrcek WY, Mahoney DP, Young BR, A real-time approach to process control, Chichester: John Wiley & Sons Ltd., 2006
  4. Westphalen DL, Young BR, Svrcek WY, Ind. Eng. Chem. Res., 42(20), 4659, 2003
  5. He MJ, Cai WJ, Ind. Eng. Chem. Res., 43(22), 7057, 2004
  6. McAvoy TJ, Arkun Y, Chen R, Robinson D, Schnelle PD, Control Eng. Practice., 11(8), 907, 2003
  7. Xiong Q, Cai WH, He MJ, J. Process Control, 15(7), 741, 2005
  8. Vasudevan S, Rangaiah GP, Ind. Eng. Chem. Res., 49(19), 9209, 2010
  9. Larsson T, Skogestad S, Identification and Control., 21(4), 209, 2000
  10. Szargut J, Morris DR, Steward FR, Exergy analysis of thermal, chemical, and metallurgical processes, New York: Hemisphere, 1988
  11. Montelongo-Luna JM, Svrcek WY, Young BR, Asia-Pacific J. Chem. Eng., 2(5), 431, 2007
  12. Muangnoi T, Asvapoositkul W, Wongwises S, Appl. Therm.Eng., 27(5-6), 910, 2007
  13. Moran MJ, Sciubba E, J. Eng. Gas Turbines Power., 116(2), 285, 1994
  14. Rosen MA, Dincer I, Int. J. Energy Res., 21, 643, 1997
  15. Rosen MA, Dincer I, Int. J. Energy Res., 23(13), 1153, 1999
  16. Rosen MA, Dincer I, Exergy, An Int. J., 1(1), 3, 2001
  17. Dincer I, Energy Policy, 30(2), 137, 2002
  18. Dincer I, Rosen MA, Exergy: Energy, environment and sustainable development, Amsterdam: Elsevier, 2007
  19. Dincer I, Hussain MM, Al-Zaharnah I, Energy Policy, 32(14), 1615, 2004
  20. Luyben WL, Tyreus BD, Luyben ML, Plantwide process control, New York: McGraw-Hill, 1998
  21. Munir MT, Yu W, Young BR, Determination of Plant-wide Control Loop Configuration and Eco-Efficiency, Rangaiah GP, Kariwala V (Eds.), in Plantwide Control: Recent Developments and Applications, John Wiley & Sons, ISBN:9780470980149, 2012
  22. Montelongo-Luna JM, Svrcek WY, Young BR, The Relative Exergy Array - A tool for integrated process design and control in Chemeca 20092009: Perth, Australia.
  23. Montelongo-Luna JM, Svrcek WY, Young BR, The Canadian J. Chem. Eng., 89(3), 545, 2010
  24. Munir MT, Yu W, Young BR, Control loop configuration and eco-efficiency, in FOCAPO/CPC-VIII2012: Savannah, Georgia, USA.
  25. Munir MT, Chen JJ, Young BR, A computer program to calculate the stream exergy using the visual basic graphical interface, in Chemeca2010: Adelaide, Australia.
  26. Munir MT, Yu W, Young BR, Chem. Eng. Res. Des., 90(1A), 110, 2012
  27. Papadourakis A, Doherty MF, Douglas JM, Ind. Eng. Chem.Res., 26(6), 1259, 1987
  28. Bristol E, Automatic Control, IEEE Transactions on., 11(1), 133, 1966
  29. Skogestad S, Lundstrom P, Jacobsen EW, AIChE J., 36(5), 753, 1990
  30. Witcher MF, McAvoy TJ, ISA Trans., l6(3), 35, 1977
  31. Fatehi A, Shariati A, Automatic pairing of MIMO plants using normalized RGA, in Mediterranean conference on control and automation2007: Athens Greece.
  32. Niederlinski A, Automatica., 7(6), 691, 1971
  33. Zhu ZX, Jutan A, Chem. Eng. Communications., 121(1), 235, 1993
  34. McAvoy TJ, Interaction analysis: Principles and applications. Research Triangle Park, NC: Instrument Society of America, 1983
  35. Ogunnaike BA, Ray WH, Process dynamics, modelling and control, Oxford University Press, 1994
  36. Goldberg J, Potter MC, Differential equations a systems approach, New Jersey: Prentice-Hall, 1998
  37. Denbigh KG, Chem. Eng. Sci., 6(1), 1, 1956
  38. Kotas TJ, The exergy method of thermal plant analysis, London: Butterworths. Medium: X; Size: Pages: 344, 1985
  39. Smith JM, Ness HCV, Abbott MM, Introduction to chemical engineering thermodynamics, New York: McGraw-Hill, 2005
  40. Smith R, Chemical process design and integration, Chichester, England: John Wiley & Sons, Ltd., 2005
  41. Hinderink AP, Kerkhof FP, Lie AB, Arons JD, Vanderkooi HJ, Chem. Eng. Sci., 51(20), 4693, 1996
  42. Szargut J, Morris DR, Steward FR, Energy analysis of thermal, chemical, and metallurgical processes, Medium: X; Size: Pages: 332, 1988
  43. Seider WD, Seader JD, Lewin DR, Product and process design principles: Synthesis, analysis, and evaluation, 2nd Ed., New York: John Wiley, 2004
  44. Montelongo-Luna JM, Process design and control for ecoefficiency, in Chemical and Petroleum Engineering2010, University of Calgary: Calgary, Alberta.