Issue
Korean Journal of Chemical Engineering,
Vol.30, No.4, 852-859, 2013
Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor
A side-stream ceramic membrane reactor system was developed that can facilitate the in situ separation of ultrafine catalysts from the reaction mixture and make the production process continuous. Continuous hydroxylation of phenol to dihydroxybenzene over ultrafine titanium silicalites-1 (TS-1) was taken as a model reaction to evaluate the feasibility and performance of the membrane reactor system. The effects of membrane pore size and operation conditions (residence time, temperature, catalyst concentration, phenol/H2O2 molar ratio) on the performance of the reactor system were examined via single factor experiments. We demonstrated that the membrane pore size and operation conditions greatly affect the conversion, selectivity and filtration resistance. The phenol conversion and dihydroxybenzene selectivity remain stable at about 11% and 95% in a 20-h continuous run, respectively.
[References]
  1. Mohamed RM, McKinney DL, Sigmund WM, Mater. Sci.Eng. R., 73, 1, 2012
  2. Du Y, Chen HL, Chen RZ, Xu NP, Appl. Catal. A: Gen., 277(1-2), 259, 2004
  3. Anastas PT, Kirchhoff MM, Williamson TC, Appl. Catal. A: Gen., 221(1-2), 3, 2001
  4. Parra S, Stanca SE, Guasaquillo I, Thampi KR, Appl. Catal. B: Environ., 51(2), 107, 2004
  5. Chen RZ, Bu Z, Li ZH, Zhong ZX, Jin WQ, Xing WH, Chem. Eng. J., 156(2), 418, 2010
  6. Le-Clech P, Chen V, Fane TAG, J. Membr. Sci., 284(1-2), 17, 2006
  7. Shim JK, Yoo IK, Lee YM, Process Biochem., 38, 279, 2002
  8. Schoeberl P, Brik M, Bertoni M, Braun R, Fuchs W, Sep. Purif. Technol., 44(1), 61, 2005
  9. Zhang YY, He C, Sharma VK, Li XZ, Tian SH, Xiong Y, Sep. Purif. Technol., 80(1), 45, 2011
  10. Chen RZ, Jiang H, Jin WQ, Xu NP, Chin. J. Chem. Eng., 17(4), 648, 2009
  11. Visvanathan C, Aim RB, Parameshwaran K, Crit. Rev. Env.Sci. Tec., 30, 1, 2000
  12. Liu HU, Cui ZF, J. Membr. Sci., 302(1-2), 180, 2007
  13. Ebrahimi M, Placido L, Engel L, Ashaghi KS, Czermak P, Desalination, 250(3), 1105, 2010
  14. Dhaouadi H, Marrot B, Chem. Eng. J., 145(2), 225, 2008
  15. Hasanoglu A, Romero J, Perez B, Plaza A, Chem. Eng. J., 160(2), 530, 2010
  16. Yang WB, Cicek N, Ilg J, J. Membr. Sci., 270(1-2), 201, 2006
  17. Wang J, Park JN, Jeong HC, Choi KS, Wei XY, Hong SI, Lee CW, Energy Fuels, 18(2), 470, 2004
  18. Wilkenhoner U, Langhendries G, van Laar F, Baron GV, Gammon DW, Jacobs PA, van Steen E, J. Catal., 203(1), 201, 2001
  19. Lu CJ, Chen RZ, Xing WH, Jin WQ, Xu NP, AIChE J., 54(7), 1842, 2008
  20. Liu H, Lu GZ, Guo YL, Guo Y, Wang JS, Chem. Eng. J., 116(3), 179, 2006
  21. Li WX, Xing WH, Xu NP, Desalination, 192(1-3), 340, 2006
  22. Broeckmann A, Busch J, Wintgens T, Marquardt W, Desalination, 189(1-3), 97, 2006
  23. Chen RZ, Du Y, Wang QQ, Xing WH, Jin WQ, Xu NP, Ind. Eng. Chem. Res., 48(14), 6600, 2009
  24. Liu H, Lu GZ, Guo YL, Guo Y, Wang JS, Chem. Eng. J., 108(3), 187, 2005
  25. Callanan LH, Burton RM, Mullineux J, Engelbrecht JMM, Rau U, Chem. Eng. J., 180, 255, 2012
  26. Kumar SM, Madhu GM, Roy S, Sep. Purif. Technol., 57(1), 25, 2007
  27. Li S, Li GL, Li GY, Wu G, Hu CW, Micropor. Mesopor.Mater., 143, 22, 2011
  28. Zhong ZX, Xing WH, Liu X, Jin WQ, Xu NP, J. Membr. Sci., 301(1-2), 67, 2007
  29. Lee SA, Choo KH, Lee CH, Lee HI, Hyeon T, Choi W, Kwon HH, Ind. Eng. Chem. Res., 40, 1712, 2011
  30. Jiang H, Meng L, Chen RZ, Jin WQ, Xing WH, Xu NP, Ind. Eng. Chem. Res., 50(18), 10458, 2011
  31. Yube K, Furuta M, Mae K, Catal. Today, 125(1-2), 56, 2007