Issue
Korean Journal of Chemical Engineering,
Vol.30, No.5, 1051-1057, 2013
Innovative and intensified technology for the biological pretreatment of agro waste for ethanol production
Lignocellulosic biomass is an abundant, renewable resource, but the structural and chemical complexity of biomass acts as a hindrance in its effective utilization for cellulosic ethanol production. Hence, effective pretreatment is always necessary to remove the surrounding matrix of lignin prior to the enzymatic hydrolysis. Pretreatment of rice straw by Pleurotus florida was found to be effective and resulted in 49% lignin degradation, whereas fungus along with grape leaves resulted in 99% lignin degradation. This method not only explores a pathway for utilizing the solid agro waste but also results in a value-added product of edible mushrooms that has proved to be the best pretreatment technology for ethanol production. FTIR and SEM analysis confirmed the structural transformation taking place during the pretreatment. The components of grape leaves were also analyzed using GC-MS.
[References]
  1. Shiva S, Mohammad FG, Soheil S, African J. Microbiol. Res., 6, 704, 2012
  2. Yamshita Y, Kurosumi A, Sasaki C, Nakamura Y, J. Biochem.Eng., 42, 314, 2008
  3. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1, 2002
  4. Chohnan S, Nakane M, Rahman MH, Nitta Y, Yoshiura T, Ohta H, Kurusu Y, J. Biosci. Bioeng., 111(4), 433, 2011
  5. Malherbe S, Cloete TE, Environ. Sci. Biotechnol., 1, 105, 2003
  6. Nutawan Y, Phattayawadee P, Pattranit T, Mohammad NE, Energy Res. J., 1, 26, 2010
  7. Ghosh P, Singh A, Adv. Appl. Microbiol., 39, 295, 1993
  8. Chahal PS, Chahal DS, Bioconversion of Waste Materials to Industrial Products, 376, 1999
  9. Gong CS, Cao NJ, Du J, Tsao GT, Adv. Biochem. Eng. Biotechnol., 65, 207, 1999
  10. Nakamura Y, Sawada T, Inoue E, J. Chem. Technol. Biotechnol., 76(8), 879, 2001
  11. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN, Biotechnol. Bioeng., 77(6), 678, 2002
  12. Wingren A, Soderstrom J, Galbe M, Zacche G, Biotechnol.Progress., 29, 1421, 2004
  13. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J, Biotechnol. Bioeng., 90(4), 473, 2005
  14. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T, J. Biotechnol., 103, 273, 2003
  15. Dashtban M, Schraft H, Qin W, Int. J. Biol. Sci., 5, 578, 2009
  16. Mendels M, Howlett W, Reese ET, Canadian J. Microbiol., 7, 957, 1961
  17. Thomas AB, Leonard WA, John LE, Botanical Gazette., 143, 1960
  18. Stafford CM, J. Biochem., 3, 45, 1960
  19. Updengroff DM, J. Anal. Biochem., 32, 420, 1969
  20. Singh RP, Garcha HS, Khanna PK, Indian J. Microbiol., 29, 49, 1989
  21. Kodali B, Pogaku R, Elec. J. Environ. Agri. Food Chem., 5, 1253, 2006
  22. Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S, Bioresour. Technol., 100(10), 2706, 2009
  23. Ciannamea EM, Stefani PM, Ruseckaite RA, Bioresour. Technol., 101(2), 818, 2010
  24. Harinder SO, Praveen VV, Khushal B, Vinod KB, Ramabhau TP, Process Biochem., 45, 1299, 2010
  25. Hergert HL, Wiley-Interscience., 267, 1971
  26. George BJ, Frantisek Z, Guido CG, J. Agri. Food Chem., 37, 1382, 1989
  27. Doshi A, Munot JF, Chakravarti BP, Mushroom J. Tropics., 7, 83, 1987
  28. Deniz T, Betul D, Fatih D, Ali AD, Husnu CBK, Peter R, J. Biosci., 58, 797, 2003
  29. Khalil A, Lina A, Yasmin J, De-Yu X, Anal. Methods., 2, 673, 2010