Issue
Korean Journal of Chemical Engineering,
Vol.30, No.4, 913-917, 2013
Production of cyclic adenosine-3',5'-monophosphate by whole cell catalysis using recombinant Escherichia coli overexpressing adenylate cyclase
Adenylate cyclase (EC 4.6.1.1) catalyzes the formation of cyclic adenosine-3',5'-monophosphate (cAMP) from adenosine 5'-triphosphate (ATP). Recombinant Escherichia coli overexpressing adenylate cyclase was used to synthesize cAMP by whole cell catalysis. Some key parameters were examined during the catalytic process, while pH and Mg2+ were found to influence cAMP production significantly. Optimum conditions were pH 8.52 and 30 ℃ with 77.2 mM Mg2+ in 100 mM Tris-HCl buffer, including 0.25% Triton-X 100 as detergent and 30 mM pyruvate sodium as enzyme activator for 6 h. 14.93 g/L of cAMP was produced with a conversion rate of 91.5%. The current work provided a potential way for the industrial production of cAMP.
[References]
  1. Sutherland EW, Rall TW, J. Am. Chem. Soc., 79, 3608, 1957
  2. Buettner MJ, Spitz E, Rickenberg HV, J. Bacteriol., 14, 1068, 1973
  3. Adelstein RS, Hathaway DR, Am. J. Cardiol., 44, 783, 1979
  4. Ando S, Kametani H, Osada H, Iwamoto M, Kimura N, Brain Res., 405, 371, 1987
  5. Antoni FA, Front. Neuroendocrin., 21, 103, 2000
  6. Sands WA, Palmer TM, Cell Signal., 20, 460, 2008
  7. Hoonekamp PM, Bone., 6, 37, 1985
  8. Tsai SF, Yang C, Wang SC, Wang JS, Hwang JS, Ho SP, Toxicol. Appl. Pharm., 194, 34, 2004
  9. Kawada T, Yoshida Y, Imai S, Br. J. Pharmacol., 97, 371, 1989
  10. Hong D, Peng XR, Chin. Pharmacol. Bull., 19, 940, 2003
  11. Mcphee I, Gibson LCD, Kewney J, Darroch C, Stevens PA, Spinks D, Biochem. Soc. Trans., 33, 1330, 2005
  12. Hirata M, Hayaishi O, Biochim. Biophys. Acta., 149, 1, 1976
  13. Ishiyama J, Appl. Microbiol. Biotechnol., 34, 359, 1990
  14. Chen XC, Song H, Fang T, Cao JM, Ren HJ, Bai JX, Xiong J, Ouyang PK, Ying HJ, Bioresour. Technol., 101(9), 3159, 2010
  15. Ishige T, Honda K, Shimizu S, Curr. Opin. Chem. Biol., 9, 174, 2005
  16. Wang X, Ma CQ, Wang XW, Xu P, J. Bacteriol., 189, 9030, 2007
  17. Iyer PV, Ananthanarayan L, Process Biochem., 43, 1019, 2008
  18. Chakraborty AA , Phadke RP, Chaudhary FA, Shete PS, Rao BS, Jasani KD, World J. Microbiol. Biotechnol., 21, 221, 2005
  19. Zhou JW, Huang L, Lian JZ, Sheng JY, Cai J, Xu ZN, Biotechnol. Lett., 32(10), 1481, 2010
  20. Gough S, Dostal L, Howe A, Deshpande M, Scher M, Rosazza JNP, Process Biochem., 40, 2597, 2005
  21. Goldberg K, Schroer K, Lutz S, Liese A, Appl. Microbiol. Biotechnol., 76(2), 237, 2007
  22. He Y, Li N, Chen Y, Chen XC, Bai JX, Wu JL, Xie JJ, Ying HJ, Appl. Microbiol. Biotechnol., DOI: 10.1007/s00253-012-3890-x. PMID:22290647 (2012 Jan. 31).
  23. Chen RRZ, Appl. Microbiol. Biotechnol., 74(4), 730, 2007
  24. de Carvalho CCCR, Biotechnol. Adv., 29, 75, 2011
  25. Bellalou J, Sarfati RS, Predeleanu R, Enzyme Microb. Technol., 10, 293, 1988
  26. Bradford MM, Anal. Biochem., 72, 248, 1976
  27. Chen XC, Bai JX, Cao JM, Li ZJ, Xiong J, Zhang L, Hong Y, Ying HJ, Bioresour. Technol., 100(2), 919, 2009
  28. Li Y, Lu J, J. Am. Soc. Brew. Chem., 63, 171, 2005
  29. Schnaitman CA, J. Bacteriol., 108, 545, 1971