Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 253-261, 2013
Waste paper sludge as a potential biomass for bio-ethanol production
This review describes the utilization of paper sludge (PS), which is waste from the pulp and paper industry. Its advantages make PS the cellulosic biomass with the most potential for bio-refinery research and applicable for industrial scale. Some of the grain based biofuels and chemicals have already been in commercial operation, including fuel ethanol or biochemical products. Unfortunately, research and application of PS are yet in their infancy and suffer from large scale because of low productivity. Reviewing the many researches that are working at the utilization of PS for bio-refineries could encourage the utilization of PS from laboratory research to be applied in industry. For this reason, PS usage as industrial raw material will be effective in solving the environmental problems caused by PS with clean technology. In addition, its conversion to bio-ethanol could offer an alternative solution to the energy crisis from fossil fuel. Two methods of PS utilization as raw material for bio-ethanol production are introduced. The simultaneous saccharification and fermentation (SSF) using cellulase produced by A. cellulolyticus and thermotolerant S. cerevisiae TJ14 gave ethanol yield 0.208 (g ethanol/g PS organic material) or 0.051 (g ethanol/g PS). One pot bioethanol production as a modified consolidated biomass processing (CBP) technology gave ethanol yield 0.19 (g ethanol/g Solka floc) and is considered to be the practical CBP technology for its minimizing process.
[References]
  1. http://www.biomassenergycentre.org.uk/portal/page?_pageid=73,1&_dad=portal&_schema=PORTAL.
  2. http://www.nnfcc.co.uk/tools/international-biofuels-strategy-projectliquid-transport-biofuels-technology-status-report-nnfcc-08-017 (Evans, G. “International Biofuels Strategy Project. Liquid Transport Biofuels - Technology Status Report, NNFCC 08-017,” National Non-Food Crops Centre, 2008-04-14. Retrieved on 2011-02-16).
  3. http://en.wikipedia.org/wiki/Second_generation_biofuels.
  4. Idi A, Mohamad SE, Interdisciplinary Journal of ContemporaryResearch in Business., 3, 919, 2011
  5. Prasetyo J, Zhu J, Kato T, Park EY, Biotechnol. Progr., 1, 104, 2011
  6. Moukamnerd C, Kino-oka M, Sugiyama M, Kaneko Y, Boonchird C, Harashima S, Noda H, Ninomiya K, Shioya S, Katakura Y, Appl. Microbiol. Biotechnol., 88(1), 87, 2010
  7. Macrelli S, Mogenson J, Zacchi G, Biotechnology for Biofuels., 5, 22, 2012
  8. Yamashita Y, Sasaki C, Nakamura Y, Carbohyd. Polymers., 79, 250, 2010
  9. Shen J, Agblevor FA, BioprL. Biosyst. Eng., 34, 33, 2010
  10. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO, Enzyme Microb. Technol., 24(3-4), 151, 1999
  11. Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ, Enzyme Microb. Technol., 27(3-5), 240, 2000
  12. http://infohouse.p2ric.org/ref/12/11563.pdf (Das KC, Tollner EW, Georgia Univ. Experiment, Athens, Georgia. Retrieved on 2nd October 2012).
  13. http://www.rfu.org/cacw/pollutionSludge4.htm.
  14. Prasetyo J, Kazuya N, Kato T, Boonchird C, Harashima S, Park EY, Biotechnol. Biofuels., 4, 35, 2011
  15. Ando T, Sakamoto T, Sugiyama O, Hiyoshi K, Matsue N, Henmi T, Clay Sci., 12, 243, 2004
  16. Lynd LR, Lyford K, South CR, van Walsum PG, Levenson K, TAPPI J., 84, 50, 2001
  17. http://ec.europa.eu/environment/waste/studies/compost/landspreading.pdf.
  18. Hendriks ATWM, Zeeman G, Bioresour. Technol., 100(1), 10, 2009
  19. http://www.ispub.com/journal/the_internet_journal_of_microbiology/volume_5_number_2_18/article/optimization_of_cellulase_production_by_submerged_fermentation_of_rice_straw_by_trichoderma_harzianum_rut_c_8230.html.
  20. Nielson J, Villadsen J, Bioreaction engineering principles., Plenum Press, New York, 86, 1994
  21. Matsushika A, Inoue H, Kodaki T, Sawayama S, Appl. Microbiol. Biotechnol., 84(1), 37, 2009
  22. Erdei B, Barta Z, Sipos B, Reczey K, Galbe M, Zacchi G, Biotechnol. Biofuel., 3, 16, 2010
  23. Fan Z, South C, Lyford K, Munsie J, Walsum PV, Lynd LR, Bioproc. Biosyst. Eng., 26, 93, 2003
  24. http://www.energyproducts.com/Documents/SLUDGPA4a.PDF(K.M. Pope, Paper sludge-waste disposal problem or energy opportunity. Energy products of Idaho 1999. Retrieved in April 2009).
  25. Prasetyo J, Kato T, Park EY, Biomass Bioenerg., 34(12), 1906, 2010
  26. Lakshmidevi R, Muthukumar K, Int. J. Hydrog. Energy., 35, 3389, 2010
  27. Environment Agency, Paper sludge ash: A technical report on the production and use of paper sludge ash, The Old Academy, Banbury, Oxon, UK, 2008
  28. Karcher D, Baser W, Paper mill sludge as a mulch during turf grass establishment, In: Clark JR, Evans MR, editors. Horticulture Studies, Fayetteville: Arkansas Agricultural Experiment Station, Research Series, 494, 67, 2002
  29. Zaldivar J, Nielsen J, Olsson L, Appl. Microbiol. Biotechnol., 56(1-2), 17, 2001
  30. Ikeda Y, Hayashi H, Okuda N, Park EY, Biotechnol. Prog., 23(2), 333, 2007
  31. Kansarn S, A novel concept for the enzymatic degradation mechanism of native cellulose by A. cellulolyticus, Shizuoka University Repository (SURE), 91, http://hdl.handle.net/10297/1453, School of Electronic Science Research Report 2002, 23, 89, 2002
  32. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS, Biotechnol. Adv., 27, 833, 2009
  33. Mata JDL, Estrada P, Macarron R, Dominguez JM, Biochem., 283, 679, 1992
  34. Prasetyo J, Sumita S, Okuda N, Park EY, Appl. Biochem. Biotechnol., 162(1), 52, 2010
  35. http://www.bioteach.ubc.ca/Biopersonalities/BioTechnologyLab/ellis.pdf.
  36. Gusakov AV, Sinitsyn AP, Biotechnol. Bioeng., 40, 663, 1992
  37. Claassen PAM, van Lier JB, Contreras AML, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA, Appl. Microbiol. Biotechnol., 6, 741, 1999
  38. Solomon BD, Barnes JR, Halvorsen KE, Biomass Bioenergy., 6, 416, 2007
  39. Lynd LR, Weimer PJ, van Zyl WH, Microbiol. Mol. Biol.Rev., 66, 506, 2002
  40. Lynd LR, van Zyl WH, McBride JE, Laser M, Curr. Opin.Biotechnol., 16, 577, 2005
  41. Lee SU, Jung K, Park GW, Seo C, Hong YK, Hong WH, Chang HN, Korean J. Chem. Eng., 29(7), 831, 2012