Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 474-481, 2013
Solubility of carbon dioxide in ammonium-based ionic liquids: Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide
Solubility results of carbon dioxide (CO2) in two ammonium-based ionic liquids, butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4,1,1,1][Tf2N]) and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([N1,8,8,8][Tf2N]), are presented at pressures up to approximately 45 MPa and temperatures ranging from 303.15 K to 343.15 K. The solubility was determined by measuring bubble point pressures of mixtures of CO2 and ionic liquid using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. Sharp increase of equilibrium pressure was observed at high CO2 compositions. The CO2 solubility in ionic liquids increased with the increase of the total length of alkyl chains attached to the ammonium cation of the ionic liquids. The experimental data for the CO2+ionic liquid systems were correlated using the Peng-Robinson equation of state.
[References]
  1. Sheldon R, Chem. Commun., 2399, 2001
  2. Xu W, Angell CA, Science., 302, 422, 2003
  3. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974, 2002
  4. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF, Nature, 399(6731), 28, 1999
  5. Jeong SK, Kim DH, Baek IH, Lee SH, Korean Chem. Eng. Res., 46(3), 492, 2008
  6. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD, Ind. Eng. Chem. Res., 48(6), 2739, 2009
  7. Cho MH, Lee H, Kim H, Korean Chem. Eng. Res., 48(1), 1, 2010
  8. Brenneke JF, Gurkan BE, J. Phys. Chem. Lett., 1, 3459, 2010
  9. Shiflett MB, Niehaus AMS, Yokozeki A, J. Chem. Eng. Data, 55(11), 4785, 2010
  10. Iarikov DD, Hacarlioglu P, Oyama ST, Chem. Eng. J., 166(1), 401, 2011
  11. Shariati A, Peters CJ, J. Supercrit. Fluids, 30(2), 139, 2004
  12. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355, 2004
  13. Kroon MC, Shariati A, Costantini M, van Spronsen J, Witkamp GJ, Sheldon RA, Peters CJ, J. Chem. Eng. Data, 50(1), 173, 2005
  14. Oh DJ, Lee BC, Korean J. Chem. Eng., 23(5), 800, 2006
  15. Anderson JL, Dixon JK, Brennecke JF, Acc. Chem. Res., 40, 1208, 2007
  16. Shin EK, Lee BC, Lim JS, J. Supercrit. Fluids, 45(3), 282, 2008
  17. Shin EK, Lee BC, J. Chem. Eng. Data, 53(12), 2728, 2008
  18. Lim BH, Choe WH, Shim JJ, Ra CS, Tuma D, Lee H, Lee CS, Korean J. Chem. Eng., 26(4), 1130, 2009
  19. Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP, J. Supercrit. Fluids, 52(3), 258, 2010
  20. Yim JH, Song HN, Lee BC, Lim JS, Fluid Phase Equilib., 308(1-2), 147, 2011
  21. Yim JH, Song HN, Yoo KP, Lim JS, J. Chem. Eng. Data, 56(4), 1197, 2011
  22. Jin YR, Jung YH, Park SJ, Baek IH, Korean Chem. Eng. Res., 50(1), 35, 2012
  23. D’Alessandro DM, Smit B, Long JR, Angew. Chem. Int. Ed., 49, 6058, 2010
  24. Shiflett MB, Drew DW, Cantini RA, Yokozeki A, Energy Fuels., 24, 5781, 2010
  25. Guide to the expression of uncertainty in measurement, International Organization of Standardization (ISO), Geneva, Switzerland, 1995
  26. Lee JM, Lee BC, Lee SH, J. Chem. Eng. Data., 45, 851, 2000
  27. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, 3rd Ed., Prentice-Hall, NJ, USA, 1999
  28. Valderrama JO, Rojas RE, Ind. Eng. Chem. Res., 48(14), 6890, 2009
  29. Baltus RE, Culbertson BH, Dai S, Luo HM, DePaoli DW, J. Phys. Chem. B, 108(2), 721, 2004