Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 286-294, 2013
Design and optimization of heat integrated dividing wall columns for improved debutanizing and deisobutanizing fractionation of NGL
Dividing wall columns, capable of reducing the energy required for the separation of ternary mixtures, were explored for the energy-efficient integration of debutanization and deisobutanization. A new practical approach to the design and optimization of dividing wall columns was used to optimize dividing wall columns. A conventional dividing wall column and a multi-effect prefractionator arrangement were shown to reduce total annual cost considerably compared with conventional distillation sequence. Various configurations incorporating a heat pump in a bottom diving wall columns were also proposed to enhance energy efficiency further. The result showed that operating cost could be reduced most significantly through novel combinations of internal and external heat integration: bottom dividing wall columns employing either a top vapor recompression heat pump or a partial bottom flashing heat pump.
[References]
  1. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559, 2010
  2. Humphrey JL, Keller II GE, Separation process technology, McGraw-Hill, New York, 1997
  3. Olujic Z, Jodecke M, Shilkin A, Schuch G, Kaibel B, Chem. Eng. Process., 48(6), 1089, 2009
  4. Asprion N, Kaibel G, Chem. Eng. Process., 49(2), 139, 2010
  5. Long NVD, Lee S, Lee M, Chem. Eng. Process., 49(8), 825, 2010
  6. Duc Long NV, Lee M, Korean J. Chem. Eng., 29(5), 567, 2012
  7. Nguyen VDL, Lee M, J. Chem. Eng. Jpn., 45(4), 285, 2012
  8. Minh LQ, Long NVD, Lee M, Korean J. Chem. Eng., 29(11), 1500, 2012
  9. Lee S, Nguyen VDL, Lee M, Ind. Eng. Chem. Res., 51(30), 10021, 2012
  10. Long NVD, Lee MY, Asia-Pac. J. Chem. Eng., 7, S71, 2012
  11. Kim YH, Nakaiwa M, Hwang KS, Korean J. Chem. Eng., 19(3), 383, 2002
  12. Kim YH, Hwang KS, Nakaiwa M, Korean J. Chem. Eng., 21(6), 1098, 2004
  13. Poth N, Brusis D, Stichlmair J, Chem. Ing. Technol., 76, 1811, 2004
  14. Amminudin KA, Smith R, Thong DYC, Towler GP, Chem. Eng. Res. Des., (Part A), 79(7), 701, 2001
  15. Bruisma D, Spoelstra S, Heat pumps in distillation, Distillation Absorption, 2010
  16. Asprion N, Rumpf B, Gritsch A, Appl. Thermal Eng., 31, 2067, 2011
  17. ANNAKOU O, MIZSEY P, Heat Recov. Syst. CHP, 15(3), 241, 1995
  18. Moser F, Schnitzer H, Heat Pumps in Industry, Elsevier, Amsterdam, 1985
  19. Ranade S, Chao Y, Industrial heat pumps: where and when? Hydrocarbon Processing, 71, 1990
  20. Mizsey P, Fonyo Z, Energy integrated distillation system design enhanced by heat pumping, Distillation and Absorption, 1992
  21. Stichlmair J, Distillation and Rectification, in Ullmann’s Encyclopedia of Industrial Chemistry - Fifth Ed., B3, 4.1, 1988
  22. Stichlmair JG, Fair JR, Distillation-principles and practices, Wiley-VCH, New York, 1998
  23. Manley DB, Multiple effect and distributive separation of isobutane and normal butane, US Patent, 8,806,339, 1998
  24. Diez E, Langston P, Ovejero G, Romero M, Appl. Therm., 29, 1216, 2009
  25. Amminudin KA, Smith R, Trans. IChemE., 79, 716, 2001
  26. Long NVD, Lee MY, Com. Chem. Eng., 37, 119, 2012
  27. Box GEP, Behnken DW, J. Technometrics., 2, 455, 1960
  28. Long NVD, Lee MY, Asia Pac. J. Chem. Eng., 6, 338, 2011
  29. Lee SH, Shamsuzzoha M, Han M, Kim YH, Lee MY, Korean J. Chem. Eng., 28, 48, 2011
  30. Premkumar R, Rangaiah GP, Chem. Eng. Res. Des., 87(1A), 47, 2009
  31. Aspen Technology, Aspen HYSYS Thermodynamics COM Interface, Version Number V7.1, 2009
  32. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis and design of chemical processes, Prentice Hall, Upper Saddle River, NJ, 187, 2003
  33. Kaibel G, Chem. Eng. Technol., 10, 92, 1987
  34. Fidkowski Z, Krolikowski L, AIChE J., 33, 643, 1987
  35. Gadalla MA, Chem. Eng. Res. Des., 87(12A), 1658, 2009
  36. Engelien HK, Skogestad S, Chem. Eng. Process., 44(8), 819, 2005
  37. Cheng HC, Luyben W, Ind. Eng. Chem. Process Des. Dev., 24, 707, 1985
  38. Emtir M, Rev E, Fonyo Z, Appl. Therm. Eng., 21, 1299, 2001
  39. Smith R, Chemical process design, McGraw Hill, New York, 346, 1995
  40. Sinnott SK, Chemical engineering design (4th Ed.), Coulson & Richardson’s Chemical Engineering Series Vol. 6, Elsevier Butterworth Heinemann, Oxford, 2005
  41. Biegler LT, Grossmann IE, Westerberg AW, Systematic methods of chemical process design, Prentice Hall Inc., New Jersey, 110, 1997
  42. Peters MS, Timmerhaus KD, Plant design and economics for chemical engineers, McGraw-Hill, 4th Ed., 523, 1991