Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 440-447, 2013
Kinetic and thermodynamic study of Eu(III) sorption on natural red earth in South China
We did a kinetic and thermodynamic study of Eu(III) sorption on natural red earth (NRE) in South China as a function of contact time, pH values, ionic strength, humic acid (HA) and temperature under ambient conditions. Linear and nonlinear regression methods in selecting the optimum sorption isotherm were applied on the experimental data. The results suggest that sorption of Eu(III) on NRE can be described by a pseudo-second-order rate equation and strongly dependent on ionic strength at pH<7. Sorption of Eu(III) on NRE increased with increasing temperature, two-parameter and three-parameter isotherms were applied to analysis the equilibrium adsorption data, and a comparison of linear and nonlinear regression methods was done. The thermodynamic parameters (ΔH0, ΔS0 and ΔG0) of Eu(III) sorption on NRE at different temperatures were calculated from the temperature-dependent sorption isotherms, indicating that the sorption process of Eu(III) was spontaneous. The results showed that the nonlinear method is a better way to obtain the isotherm parameters and the data were in good agreement with the Freundlich isotherm model.
[References]
  1. Zhao DL, Chen CL, J. Radioanal. Nucl. Chem., 270, 445, 2006
  2. Chen L, Yu XJ, Zhao ZD, J. Radioanal. Nucl. Chem., 274, 187, 2007
  3. Benes P, Stamberg K, Vopalka D, Siroky L, Prochazkova S, J. Radioanal. Nucl. Chem., 256, 465, 2003
  4. Stamberg K, Benes P, Mizera J, Dolansky J, Vopalka D, Chalupska K, J. Radioanal. Nucl. Chem., 258, 329, 2003
  5. Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK, Sci. China Chem., 53, 1420, 2010
  6. Yu XH, Zhu LJ, Guo BW, He SY, Chin. J. Geochem., 28, 220, 2009
  7. Dong WM, Wang XK, Du JZ, Bian XY, Ma F, Tao ZY, J. Radioanal. Nucl. Chem., 242, 793, 1999
  8. Tao ZY, Li WJ, Zhang FM, Han J, J. Radioanal. Nucl.Chem., 268, 563, 2006
  9. Yu S, He ZL, Huang CY, Chen GC, Calvert DV, J. Environ. Qual., 31, 1129, 2002
  10. Mahatantila K, Seike Y, Okumura M, Int. J. Eng. Sci. Technol., 3, 1655, 2011
  11. Vadivelan V, Kumar KV, J. Colloid Interface Sci., 286(1), 90, 2005
  12. Ofomaja AE, Chem. Eng. J., 143(1-3), 85, 2008
  13. Chowdhury S, Saha P, Bioremediat. J., 196, 14, 2010
  14. Kumar KV, Sivanesan S, J. Hazard. Mater., 134(1-3), 277, 2006
  15. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK, Chem. Eng. J., 150(1), 188, 2009
  16. Fan QH, Shao DD, Lu Y, Wu WS, Wang XK, Chem. Eng. J., 150(1), 188, 2009
  17. Fan QH, Shao DD, Wu WS, Wang XK, Radiochim. Acta., 96, 159, 2008
  18. Wang XK, Chen YX, Wu YC, J. Radioanal. Nucl. Chem., 261, 497, 2004
  19. Fan QH, Zhang ML, Zhang YY, Ding KF, Yang ZQ, Wu WS, Radiochim. Acta., 98, 19, 2010
  20. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK, Micropor. Mesopor. Mater., 123, 1, 2009
  21. Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C, Langmuir, 14(7), 1880, 1998
  22. Yang ST, Li JX, Lu Y, Chen YX, Wang XK, Appl. Radiat.Isot., 67, 1600, 2009
  23. Misra SCR, Kushwaha P, Das P, Bioremediat. J., 15, 77, 2011
  24. Belhachemi M, Addoun F, Appl. Water Sci., 1, 111, 2011
  25. Terzyk AP, Chatlas J, Gauden PA, Rychlicki G, Kowalczyk P, J. Colloid Interface Sci., 266(2), 473, 2003
  26. Chen L, Gao B, Lu SS, Dong YH, J. Radioanal. Nucl.Chem., 288, 851, 2011
  27. Donat R, Cilgi GK, Aytas S, Cetisli H, J. Radioanal. Nucl.Chem., 279, 271, 2009