Issue
Korean Journal of Chemical Engineering,
Vol.30, No.2, 385-391, 2013
Neural network prediction of fluidized bed bioreactor performance for sulfide oxidation
Sulfide oxidation rate of a fluidized bed bioreactor was predicted using ANN, with upflow velocity, hydraulic retention time, reactor operation time and pH given as input. The reactor was fed with 100mg/L synthetic sulfide wastewater after biofilm formation on nylon support particles. Feedforward neural network model was prepared using 81 data sets, of which 63 were used for training and 18 for testing in a three-way cross validation. Prediction performance of the network was evaluated by calculating the percent error of each data set and mean square error for test data set in three partitions. The mean square error for test data set was 5.55, 4.08 and 2.30 for partition 1, partition 2 and partition 3, respectively. The predicted sulfide oxidation values correlated with the experimental values and a correlation coefficient of 0.96, 0.97 and 0.98 was obtained for partition 1, partition 2 and partition 3, respectively.
[References]
  1. Buisman CJN, Peter I, Anne H, Janssen AJH, Robert TH, Lettinga G, Biotechnol. Bioeng., 38, 813, 1991
  2. Kuenen JG, Plant Soil., 43, 49, 1975
  3. TICHY R, JANSSEN A, GROTENHUIS JTC, LETTINGA G, RULKENS WH, Bioresour. Technol., 48(3), 221, 1994
  4. Fox P, Suidan MT, Bandy JT, Water Res., 24, 827, 1990
  5. Tavares CRG, Sant’Anna GL, Capdeville B, Water Res., 29, 2293, 1995
  6. Schreyer HB, Coughlin RW, Biotechnol. Bioeng., 63(2), 129, 1999
  7. Lertpocasombut K, Capdeville B, Roques H, Application of aerobic biofilm growth in a three-phase fluidized-bed reactor for biological wastewater treatment, 2nd IAWPRC Asian Conf. Water Pollut. Control, Bangkok, 1988
  8. Fan LS, Tang WT, AIChE J., 35, 355, 1989
  9. Saucedo RA, Ramirez NR, Manzanares L, Bautista RG, Nevarez GV, Environ. Technol., 24, 457, 2003
  10. Mowla D, Ahmadi M, Biochem. Eng. J., 36, 147, 2007
  11. Rajasimman M, Karthikeyan C, J. Hazard. Mater., 143(1-2), 82, 2007
  12. Rajasimman M, Karthikeyan C, J. Appl. Sci. Environ. Manage., 11(3), 97, 2007
  13. Hamed MM, Khalafallah MG, Hassanien EA, Environ.Modell. Softw., 19, 919, 2004
  14. Strik DPBTB, Domnanovich AM, Zani L, Braun R, Holubar P, Environ. Modell. Softw., 20, 803, 2005
  15. Sahinkaya E, Ozkaya B, Kaksonen AH, Puhakka JA, Biotechnol. Bioeng., 97(4), 780, 2007
  16. Mahmood Q, Zheng P, Wu DL, Wang XS, Yousaf H, Ul-Islam E, Hassan MJ, Jilani G, Azim MR, Biomed. Environ.Sci., 20, 398, 2007
  17. Rangasamy P, Iyer PVR, Ganesan S, J. Environ. Sci., 19, 1416, 2007
  18. Shi X, Qiao J, Neural network predictive optimal control for wastewater treatment, International Conference on Intelligent Control and Information Processing, August 13-15, Dalian, China, 2010
  19. Vinod AV, Kumar KA, Reddy GV, Biochem. Eng. J., 46, 12, 2009
  20. Wang AJ, Liu CS, Han HJ, Ren NQ, Lee DJ, J. Hazard. Mater., 168(2-3), 1274, 2009
  21. Delnavaz M, Ayati B, Ganjidoust H, J. Hazard. Mater., 179(1-3), 769, 2010
  22. Berastegi GI, Elias A, Arias R, Barona A, IEEE, 584, 2007
  23. Sreekrishnan TR, Ramachandran KB, Ghosh P, Biotechnol.Bioeng., 37, 557, 1991
  24. Midha V, Jha MK, Dey A, J. Eng. Sci. Technol., Inpress.
  25. Maier HR, Dandy GC, Environ. Modell. Softw., 13, 179, 1998
  26. Nguyen D, Widrow B, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, In: Proceedings of the International Joint Conference on Neural Networks, 3, 21, 1990
  27. Abdi H, Valentin D, Edelman B, O’Toole AJ, J. Math., 40, 175, 1996
  28. El-Din AG, Smith DW, Water Res., 36, 1115, 2002
  29. Toth E, Brath A, Montanari A, J. Hydrol., 239, 132, 2000
  30. Guha A, Application of artificial neural network for predicting yarn properties and process parameters, Ph.D Thesis, Indian Institute of Technology, Delhi, India, 2002
  31. Midha V, Jha MK, Dey A, J. Environ. Sci., 24, 513, 2012