Issue
Korean Journal of Chemical Engineering,
Vol.30, No.1, 221-227, 2013
Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation
Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process.
[References]
  1. Kohli P, Wirtz M, Martin CR, Electroanalysis., 16, 9, 2004
  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710, 1992
  3. Masuda H, Fukuda K, Science, 268(5216), 1466, 1995
  4. Hwang SK, Jeong SH, Hwang HY, Lee OJ, Lee KH, Korean J. Chem. Eng., 19(3), 467, 2002
  5. Kim TY, Jeong SH, Korean J. Chem. Eng., 25(3), 609, 2008
  6. Jung M, Choi JW, Kim YK, Oh BK, Korean Chem. Eng. Res., 46(3), 465, 2008
  7. Lee Y, Jung J, Korean Chem. Eng. Res., 49(1), 28, 2011
  8. Li Y, Zheng M, Ma L, Shen W, Nanotechnology., 17, 5105, 2006
  9. Ding Y, Kim YJ, Erlebacher J, Adv. Mater., 16(21), 1897, 2004
  10. Switzer JA, Hung CJ, Huang LY, Scott Miller F, Zhou Y, Raub ER, Shumsky MG, Bohannan EW, J. Mater. Res., 13, 909, 1998
  11. Faulds K, Littleford RE, Graham D, Dent G, Smith WE, Anal. Chem., 76, 592, 2004
  12. Ono S, Saito M, Asoh H, Electrochem. Solid State Lett., 7(7), B21, 2004
  13. Singh GK, Golovin AA, Aranson IS, Phys. Rev., B., 73, 205422, 2006
  14. Asoh H, Nishio K, Nakao M, Yokoo A, Tamamura T, Masuda H, J. Vac. Sci. Technol. B, 19(2), 569, 2001
  15. Sanz O, Echave FJ, Odriozola JA, Montes M, Ind. Eng. Chem. Res., 50(4), 2117, 2011
  16. Wood GC, O’Sullivan JP, Electrochim. Acta., 15, 1865, 1970
  17. Setoh S, Miyata A, Sci. Pap. Inst. Phys. Chem. Res., (Jpn.)., 17, 189, 1932
  18. Ebihara K, Takahashi H, Nagayama M, J. Met. Finish. Jpn., 33, 156, 1982
  19. Li F, Zhang L, Robert, Metzger M, Chem. Mater., 10, 2470, 1998
  20. Schwirn K, Lee W, Hillebrand R, Steinhart M, Gosele KNU, ACS Nano., 2, 302, 2008
  21. Patermarakis G, Karayannis HS, Electrochim. Acta, 40(16), 2647, 1995
  22. Patermarakis G, Nicolopoulos N, J. Catal., 187(2), 311, 1999
  23. Patermarakis G, Tzouvelekis D, Electrochim. Acta, 39(16), 2419, 1994
  24. Johansson A, Torndahl T, Ottosson LM, Boman M, Carlsson JO, Mater. Sci. Eng., C., 23, 823, 2003
  25. Keilbach A, Moses J, RalfKohn, Doblinger M, Bein T, Chem. Mater., 22, 5430, 2010
  26. Inguanta R, Piazza S, Sunseri C, Appl. Surf. Sci., 255(21), 8816, 2009