Issue
Korean Journal of Chemical Engineering,
Vol.29, No.10, 1373-1381, 2012
A dynamic adsorption model for the gas-phase biofilters treating ethanol: Prediction and validation
A dynamic adsorption model was proposed using the lumping process for an adsorption system. This novel approach uses a four-component structure model: gas phase, enclosed aqueous phase, sorption volume and porous media surface adsorption. A clouding effect represented by ka (dynamic adsorption constant) was adopted to explain the adsorption process. The clouding effect assumes that the adsorption rate is decreased as the adsorption sites on the media surface are occupied. In the equilibrium stage the Freundlich adsorption isotherm was adopted. The proposed dynamic adsorption model was then predicted in comparison with the experimental data of an adsorption-column to estimate adsorption model parameter values in a biofilter fed with ethanol at 4,100 mg ethanol/m3 (or 2,000 ppmv). Model validation was performed for the adsorption column fed with ethanol at 2,050 mg ethanol/m3 (or 1,000 ppmv). Results showed that the mechanistic model was able to simulate the dynamic behavior of an adsorption process successfully according to the corresponding adsorption experimental data.
[References]
  1. Bittman BE, McCarty PL, Biotechnol. Bioeng., 22, 2343, 1980
  2. Bittman BE, McCarty PL, Biotechnol. Bioeng., 22, 2359, 1980
  3. Ottengraf SPP, in Biotechnology, H. J., Rehm and G. Reed, Eds., VCH, Weinheim, Germany, 8, 426, 1986
  4. Ottengraf SPP, Meesters JJP, Van Den Oever AHC, Rozema HR, Bioprogress Eng., 1(1), 61, 1986
  5. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334, 1990
  6. Shareefdeen Z, Baltzis BC, Oh YS, Bartha R, Biotechnol.Bioeng., 41, 512, 1993
  7. Deshusses MA, Hamer G, Bioprocess Eng., 9, 141, 1993
  8. Deshusses MA, Hamer G, Dunn IJ, Environ. Sci. Technol., 29, 1048, 1995
  9. Speitel GE, Mclay DS, J. Environ. Eng., 119, 658, 1993
  10. Zarook S, Baltzis BC, Chem. Eng. Sci., 49(24A), 4347, 1994
  11. Zarook SM, Shaikh AA, Ansar Z, Chem. Eng. Sci., 52(5), 759, 1997
  12. Amanullah M, Farooq S, Viswanathan S, Ind. Eng. Chem. Res., 38(7), 2765, 1999
  13. Alonso C, Zhu X, Suidan MT, Kim BR, Kim BJ, J. Environ.Eng., 127, 655, 2001
  14. Jorio H, Payre G, Heitz M, J. Chem. Technol. Biotechnol., 78(7), 834, 2003
  15. Wani AH, Branion RMR, Lau AK, J. Environ. Sci. Health., A32, 2027, 1997
  16. Lith VJ, Air & Waste Mgmt. Assoc., 47, 37, 1997
  17. Auria R, Aycagner AC, Devinny JS, J. Air & Waste Mgmt.Assoc., 48, 65, 1997
  18. Joly A, Perrard A, Mathematics and Computers in Simulation., 79, 3492, 2009
  19. Gholami M, Talaie MR, Roodpeyma S, Chem. Eng. Sci., 65(22), 5942, 2010
  20. Zhang XP, Zhao X, Hu JQ, Wei CH, Bi HT, J. Hazard. Mater., 186(2-3), 1816, 2011
  21. Lee EJ, Lim KH, Korean Chem. Eng. Res., 46(5), 994, 2008
  22. Lee EJ, Seo KS, Jeon WS, Lim KH, Korean Chem. Eng. Res., 50(1), 149, 2012
  23. Hand DW, Crittenden JC, Thacker WE, J. Environ. Eng., 109, 82, 1983
  24. Speitel GE, Dovantzis K, DiGiano FA, J. Environ. Eng., 113(1), 32, 1987
  25. Speitel GE, DiGiano FA, J. Am. Water Works Assoc., 79, 64, 1987
  26. Perry RH, Green D, Perry Chemical Engineers’ Handbook, 6th Ed., 1987
  27. Kant R, Rattan VK, Indian J. Chem. Technol., 16(3), 240, 2009