Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1760-1767, 2010
Optimization of methanol synthesis reaction on Cu/ZnO/Al2O3/ZrO2 catalyst using genetic algorithm: Maximization of the synergetic effect by the optimal CO2 fraction
A kinetics model that takes the synergetic effect of carbon dioxide fraction on the methanol production rate into account is applied to the development of a mathematical model for the bench-scale reactor. A comparison between the simulation results and the experimental data corroborates the validity of the model. Several optimization strategies are suggested to maximize the methanol yield, among which the utilization of piecewise trajectories for wall temperature along the reactor axis as well as the optimal CO2 fraction at the inlet of the reactor is found to be the best strategy in the sense of methanol production per unit amount of the feed, in such a way that the optimization strategy considers the variation of the reaction temperature in the reactor and maximizes the synergetic effect on the production rate by the addition of carbon dioxide.
[References]
  1. Olah GA, Doggweiler H, Felberg JD, Frohlich S, Grdina MJ, Karpeles R, Keumi T, Inaba S, Ip WM, Lammerstsmak K, Salem G, Tabor DC, J. Am. Chem. Soc., 106, 2143, 1984
  2. Olah GA, Angew. Chem. Int. Ed., 44, 2636, 2005
  3. Prakash GKS, Smart MC, Wang QJ, Atti A, Pleynet V, Yang B, McGrath K, Olah GA, Narayanan SR, Chun W, Valdez T, Surampudi S, J. Fluorine Chem., 125, 1217, 2004
  4. Lange JP, Catal. Today, 64(1-2), 3, 2001
  5. Satterfield CN, Heterogeneous catalysis in industrial practice, McGraw-Hill, New York, 1991
  6. Herman RG, Klier K, Simmons GW, Finn BP, Bulko JB, J. Catal., 56, 407, 1979
  7. Chinchen GC, Denny PS, Parger DG, Spenser MS, Whan DA, Appl. Catal., 30, 333, 1987
  8. Denise B, Sneeden RPA, J. Mol. Catal., 17, 359, 1982
  9. Klier K, Chatikavanij V, Herman RG, Simmons GW, J. Catal., 74, 343, 1982
  10. Edwards JF, Schrader GL, J. Phys. Chem., 88, 5624, 1984
  11. Coteron A, Hayhurst AN, Chem. Eng. Sci., 49(2), 209, 1994
  12. McNeil MA, Schack CJ, Rinker RG, Appl. Catal., 50, 265, 1989
  13. Lim HW, Park MJ, Kang SH, Chae HJ, Bae JW, Jun KW, Ind. Eng. Chem. Res., 48(23), 10448, 2009
  14. Løvik I, Hillestad M, Hertzberg T, Comput. Chem. Eng., 22, S707, 1998
  15. Kordabadi H, Jahanmiri A, Chem. Eng. J., 108(3), 249, 2005
  16. Rahimpour MR, Lotfinejad M, Chem. Eng. Technol., 30(8), 1062, 2007
  17. Rahimpour MR, Behjati HE, Fuel Process. Technol., 90(2), 279, 2009
  18. Graaf GH, Sijtsema PJJM, Stamhuis EJ, Joosten GEH, Chem. Eng. Sci., 41, 2883, 1986
  19. Mizsey P, Newson E, Truong TB, Hottinger P, Appl. Catal. A: Gen., 213(2), 233, 2001
  20. Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587, 1999
  21. Kordabadi H, Jahanmiri A, Chem. Eng. Process., 46(12), 1299, 2007
  22. Chae HJ, Choo ST, Choi H, Nam IS, Yang HS, Song SL, Ind. Eng. Chem. Res., 39(5), 1159, 2000
  23. Chilton TH, Colburn AP, Ind. Eng. Chem., 26, 1183, 1934
  24. Perry RH, Green DW, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York, 1997
  25. Lommerts BJ, Graaf GH, Beenackers AACM, Chem. Eng. Sci., 55(23), 5589, 2000
  26. Suwanwarangkul R, Croiset E, Fowler MW, Douglas PL, Entchev E, Douglas MA, J. Power Sources, 112, 9, 2003
  27. Fuller EN, Schettler PD, Gidding JC, Ind. Eng. Chem., 58, 19, 1966
  28. Westerterp KR, Van Swaaij WPM, Beenackers AACM, Chemical reactor design and operation, Wiley, Chichester, 1987
  29. Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, 1989