Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3267-3276, 2022
Enhanced photocatalytic activity over ZnO supported on calcium sulfate whisker derived from desulfurization gypsum
Calcium sulfate whisker (CSW) was prepared from flue gas desulfurization (FGD) gypsum by recrystallization method, and then was employed in preparing ZnO/CSW photocatalysts by impregnation method. CSW and ZnO/CSW were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Xray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), UVVis diffuse reflectance spectroscopy (UV-Vis DRS) and photoluminescence spectrum (PL). The photocatalytic activity of various ZnO/CSW photocatalysts was evaluated by photocatalytic degradation of methylene blue (MB) under simulated sunlight irradiation. The results showed that various ZnO/CSW photocatalysts exhibited much higher photocatalytic activity than pure ZnO and CSW. Among various ZnO/CSW photocatalysts, the photocatlytic activity of ZnO/ CSW increased as increasing the ZnO loading amount from 1.2% to 8.7%, but decreased when the ZnO loading amount was beyond 8.7% due to the increasing crystalline size of ZnO and recombination of photogenerated hole/electron pairs. Besides ZnO loading amount, MB initial concentration and the dosage of photocatalyst also had significant influence on MB degradation rate, and MB degradation rate over ZnO/CSW reached 95.4% under optimum conditions. Kinetics study revealed that the photocatalytic degradation of MB over ZnO/CSW can be described by the pseudo-first-order kinetic model, and the apparent rate constant k versus ZnO loading amount L, MB initial concentration C0 and the dosage of photocatalyst D can be described as: k=0.5237L0.5193C0 -0.3074D0.4589.
[References]
  1. Wu S, Wang WL, Ren CZ, Yao XL, Yao YG, Zhang QS, Li ZF, Constr. Build. Mater., 228, 116676, 2019
  2. Miao M, Feng X, Wang GL, Cao SM, Shi W, Shi LY, Particuology, 19, 53, 2015
  3. Fan TT, Wang XS, Gao Y, Zhang XY, Constr. Build. Mater., 224, 515, 2019
  4. Yang HC, Tsai TP, Hsieh CT, Chem. Pap., 71, 1343, 2017
  5. Qi YF, Zeng CF, Wang CQ, Ke XB, Zhang LX, Mater. Lett., 194, 231, 2017
  6. Fan H, Song XF, Liu TJ, Xu YX, Yu JG, J. Cryst. Growth, 495, 29, 2018
  7. Zhang QJ, Ma PY, Yang YR, Pan XF, Zhang JF, Xiang L, J. Environ. Chem. Eng., 6, 520, 2018
  8. Fan H, Song XF, Xu YX, Yu JG, Appl. Surf. Sci., 478, 594, 2019
  9. Cao BL, Wang X, Zhang XT, Jin B, Xu ZY, Liu XP, Zhang W, Yang LS, Particuology, 54, 173, 2021
  10. Zeng GM, Chen M, Zeng ZT, Science, 340, 1403, 2013
  11. Wang MK, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M, Nat. Chem., 2, 385, 2010
  12. Anwer H, Mahmood A, Lee J, Kim KH, Park JW, Yip ACK, Nano Res., 12(5), 955, 2019
  13. Shilpa G, Mohan PK, Kishore DK, Deepthi PR, Sukhdev A, Bhaskar P, Mater. Today: Proc., 62, 5477, 2022
  14. Loke JY, Zaki RSM, Setiabudi HD, Mater. Today: Proceed., 57, 1315, 2022
  15. Julkapli NM, Bagheri S, Hamid SBA, Sci. World J., 692307, 2014
  16. Yu CL, Yang K, Shu Q, Yu JC, Cao FF, Li X, Chinese J. Catal., 32, 555, 2011
  17. Khademalrasool M, Talebzadeh MD, Farbod M, J. Photochem. Photobiol. A-Chem., 396, 112561, 2020
  18. Liu YS, Gao W, Zhang C, Zhang L, Zhi YX, J. Taiwan Inst. Chem. E, 88, 277, 2018
  19. Hernandez-Carrillo MA, Torres-Ricardez R, Garcia-Mendoza MF, Ramirez-Morales E, Rojas-Blanco L, Diaz-Flores LL, Sepulveda-Palacios GE, Catal. Today, 349, 191, 2020
  20. Song L, Wang YF, Ma J, Zhang QH, Shen ZJ, Appl. Surf. Sci., 442, 101, 2018
  21. Di Mauro A, Farrugia C, Abela S, Refalo P, Grech M, Falqui L, Privitera V, Impellizzeri G, Mater. Sci. Semicond. Process, 118, 105214, 2020
  22. Zhang W, Li X, Wang H, Song YJ, Zhang SH, Li CQ, Korean J. Chem. Eng., 34, 3132, 2017
  23. Huang SS, Zhao JR, Wu CH, Wang X, Fei SM, Zhang Q, Wang Q, Chen ZW, Uvdal K, Hu ZJ, Chem. Eng. Sci., 209, 115185, 2019
  24. Qin Z, Sun H, Tang YN, Chang ZY, Yin SY, Liu ZN, J. Alloy. Compd., 829, 154393, 2020
  25. Zhang N, Li R, Zhang G, Dong L, Zhang D, Wang G, Li T, Acs Omega, 5, 11987, 2020
  26. Zhang XP, Wang QQ, Li J, Huang L, Yu DB, Dong SJ, Analyst, 143, 2837, 2018
  27. Irani E, Amoli-Diva M, J. Photochem. Photobiol. A-Chem., 391, 112359, 2020
  28. Wu DZ, Fan XM, Dai J, Liu HR, Liu H, Zhang FZ, Chin. J. Catal., 33, 802, 2012
  29. Niu H, Zhao D, Xie G, Yuan Y, Zhang W, Zhang C, Li C, Cui L, Fuel, 304, 121410, 2021
  30. He B, Lin XF, Zhang YF, J. Therm. Anal. Calorim., 132, 1145, 2018
  31. Guan QJ, Sun W, Liu RQ, Yin ZG, Zhang CH, J. Cent. South Univ., 25, 526, 2018
  32. Ha LP, Vinh THT, Thuy NTB, Thi CM, Viet PV, J. Environ. Chem. Eng., 9, 105103, 2021
  33. Zhou D, Wei RF, Zhu YL, Long HM, Huang BF, Wang YF, Wu SC, J. Clean Prod., 290, 125754, 2021
  34. Patil SM, Deshmukh SP, More KV, Shevale VB, Mullani SB, Dhodamani AG, Delekar SD, Mater. Chem. Phys., 225, 247, 2019
  35. Li X, Jie B, Lin H, Deng Z, Qian J, Yang Y, Zhang X, J. Environ. Manage., 308, 114664, 2022
  36. Dey S, Das S, Kar AK, Mater. Chem. Phys., 270, 124872, 2021
  37. Azarniya A, Soltaninejad M, Zekavat M, Bakhshandeh F, Hosseini HRM, Amutha C, Ramakrishna S, Mater. Chem. Phys., 256, 123740, 2020
  38. Qin W, Qi J, Wu XH, Vacuum, 107, 204, 2014