Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2368-2378, 2022
H2S adsorption performance of alkali lignocarbon/PVA composite membrane
In this work, lignin carbon-based membranes were prepared for H2S adsorption. Alkali lignin was carbonized to obtain alkali lignocarbon (CLA). Using the CLA and polyvinyl alcohol (PVA) as raw materials, glycerol and water as plasticizers, and nano-CuO and Cu2+ as dopants, CLA/PVA, CuO-CLA/PVA-1, and Cu-CLA/PVA-2 composite membranes were prepared by solution casting method. The structures of these membranes and their H2S adsorption properties were then analyzed. The results show that with a membrane solution water-alcohol ratio of 3 : 1 and 2 wt% CLA content, the prepared CLA/PVA membrane can adsorb H2S for 30 min. The CuO-CLA/PVA-1 and Cu- CLA/PVA-2 membranes, which were obtained after doping with nano-CuO and Cu2+, demonstrate significantly improved deodorization performance compared with that of CLA/PVA. The Cu-CLA/PVA-2 membrane can adsorb H2S for up to 75min and also demonstrates better mechanical properties. The H2S adsorption capacity of this membrane is up to 0.27 mol/kg. Structural analysis shows that the veneers of the three composite membranes are smooth and that doped copper is evenly distributed in the membranes as nano-CuO. The surface functional groups of the CLA/PVA, CuO-CLA/PVA-1, and Cu-CLA/PVA-2 membranes are similar and play a positive role in H2S adsorption. Nano-CuO is the main active site for H2S adsorption in the Cu-containing composite membranes.
[References]
  1. Yang Q, Li Y, Cui B, Yang ZQ, Liu ZB, Peng YZ, Acta Sci. Circumst., 39(07), 2079, 2019
  2. Barelli L, Bidini G, Micoli L, Sisani E, Turco M, Energy, 160, 44, 2018
  3. Ma X, Lin BK, Wei X, Kniep J, Lin YS, Ind. Eng. Chem. Res., 52(11), 4297, 2013
  4. Mahdyarfar M, Mohammadi T, Mohajeri A, New Carbon Materials, 28(1), 39, 2013
  5. Lightfoot EN, Root TW, O'Dell JL, Biotechnol. Prog., 24(3), 599, 2008
  6. Wang F, Research on the controllable preparation and functional modification of gas separation carbon membranes, MA thesis, Shenyang University of Technology, Shenyang (2020).
  7. Sim YH, Wang H, Li FY, Chua ML, Chung TS, Toriida M, Tamai S, Carbon, 53, 101, 2012
  8. Somsesta N, Sricharoenchaikul V, Aht-Ong D, Mater. Chem. Phys., 240, 122221, 2020
  9. Liu Y, Xia JJ, Lin JY, Zhang Y, Tong ST, Chin. J. Environ. Eng., 10(11), 6171, 2016
  10. Wang XC, Zhang FF, Jiang TT, J. Funct. Mater., 45(11), 11001, 2014
  11. Zeng MS, She YQ, Hu YB, Wu LJ, Yuan MJ, Qi Y, Wang H, Lin XL, Qin YL, Chem. Ind. Eng. Prog., 40(08), 4573, 2021
  12. Yue XP, Chen FG, Zhou XS, BioResources, 6(2), 2022, 2011
  13. Liu S, Wei W, Wu S, Zhang F, J. Porous Mat., 27(5), 1523, 2020
  14. Zhang T, Shen Q, J. Cellul. Sci. Technol., 4, 19, 2004
  15. Zhong L, Preparation and propertiesresearch of pore-size controllable carbonmembrane, MA thesis, Donghua University, Shanghai (2006).
  16. Tran CD, Ho HC, Keum JK, Chen J, Gallego NC, Naskar AK, Energy Technol., 5(11), 1927, 2017
  17. Li YJ, Li F, Yang Y, Ge BC, Meng FZ, J. Polym. Eng., 41(4), 245, 2021
  18. Pang J, Preparation and capacitive performance of sodium lignosulfonate based porous carbons, DE thesis, China University of Mining and Technology, Beijing (2018).
  19. Wang XC, Zhang FF, Qiang TT, J. Funct. Mater., 45(11), 11001, 2014
  20. Zhua JD, Yan CY, Zhang X, Yang C, Jiang MJ, Zhang XW, Prog. Energy Combust. Sci., 76, 360, 2020
  21. Aadil KB, Jha H, Iran. Polym. J., 25(8), 661, 2016
  22. Korbagv I, Saleh SM, Int. J. Environ. Stud., 73(2), 226, 2016
  23. Zhou C, Li PW, Qu YH, Yang ZM, He ZY, Wang C, Liu YH, Song SH, Yu LJ, Chin. Polym. Bull., 2, 9, 2021
  24. Li CY, Xin Q, Wu H, Guo R, Tian Z, Liu Y, Jiang Z, Energy Environ. Sci., 7(4), 1489, 2014
  25. Wang HX, Wang YY, Hu Z, Bai Y, Xiao TPF, China Synth. Resin Plast., 37(04), 28, 2020
  26. Zhao Y, Ho WW, Ind. Eng. Chem. Res., 52(26), 8774, 2013
  27. Shi CP, Hao XH, Li F, Li HM, Sun M, Packaging J., 3(01), 62, 2011
  28. Montes D, Tocuyo E, González E, Rodríguez D, Solano R, Atencio R, Moronta A, Microporous Mesoporous Mater., 168, 111, 2013
  29. Koteswararao J, Satyanarayana SV, Madhu GM, Venkatesham V, Heliyon, 5(6), e01851, 2019
  30. Al-Tayyar NA, Youssef AM, Al-Hindi RR, Food Packaging and Shelf Life, 25, 100523, 2020
  31. Liu X, Chen X, Ren J, Chang M, He B, Zhang C, Int. J. Biol. Macromol., 132, 978, 2019
  32. Jayakumar A, Heera KV, Sumi TS, Joseph M, Mathew S, Praveen G, Radhakrishnan EK, Int. J. Biol. Macromol., 136, 395, 2019
  33. Bunmechimma L, Leejarkpai T, Riyajan SA, Carbohydr. Polym., 240, 116215, 2020
  34. Gao Y, Shi XR, Liu WL, Wang WX, Shen YF, Chen J, Acta. Mater. Compos. Sin., 33(01), 53, 2016
  35. Sitthikhankaew R, Predapitakkun S, Kiattikomol RW, Pumhiran S, Assabumrungrat S, Laosiripojana N, EnergyProcedia, 9, 15, 2011
  36. Li Y, Wang LJ, Fan HL, Shangguan J, Wang H, Mi J, Energy Fuels, 29, 298, 2015
  37. Li F, Meng F, Wang H, Ge B, Zhang Y, Yu C, New. J. Chem., 43(44), 17494, 2019
  38. Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM, J. Mater. Sci., 50(21), 7064, 2015
  39. Wang WL, Li DS, Wang ZJ, Cui HL, Xue GL, Chin. J. Inorg. Chem., 18(8), 823, 2002
  40. Matsushima T, Kinoshita Y, Murata H, Appl. Phys. Lett., 91(25), 253504, 2007