Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2069-2079, 2022
Multi-objective optimization of microchannel heat sink with Cantor fractal structure based on Pareto genetic algorithm
Microchannel heat sinks have been widely used in high-density packaged electronic device cooling technology. We combined the cantor fractal structure with the microchannel heat sink to design a new type of microchannel structure. Combining fractal structure with microchannel heat sink is one of the cutting-edge technologies of heat transfer to solve the heat dissipation problem of high heat flux electronic equipment. We chose the width-to-height ratio of the microchannel inlet (a/b), the width-to-height ratio of the Cantor fractal baffle (B/h) and the ratio of the microchannel inlet width and the distance between each group of baffles (a/λ) as design variables, and the optimization objective was to make the global thermal resistance and pump work minimum. First, the pressure drops, temperature, and velocity of the microchannel heat sink were analyzed. Then, to consider the fluid heat transfer and pressure drop comprehensively, the enhanced heat transfer factor PEC was used to evaluate the comprehensive heat transfer performance of the microchannel. The final optimized structure PEC values were all greater than 1. In the Reynolds number (Re) range of 100-500, its enhanced heat transfer factor PEC is 1.56-1.79, which indicates that the heat transfer effect of the optimized microchannel heat sink is greatly enhanced than that of the conventional microchannel.
[References]
  1. Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji DD, Ranjbar AA, Case. Stud. Therm. Eng., 13, 100356, 2019
  2. Ghobadi AH, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4262, 2019
  3. Gholinia M, Moosavi SK, Pourfallah M, Gholinia S, Ganji DD, Int. J. Amb. Energy, 42, 1815, 2021
  4. Rahimi-Gorji M, Van de Sande L, Debbaut C, Ghorbaniasl G, Braet H, Cosyns S, Ceelen W, Adv. Drug Deliv. Rev., 160, 105, 2020
  5. Anastasiou E, Lorentz KO, Stein GJ, Mitchell PD, Lancet. Infect. Dis., 14, 553, 2014
  6. Gholinia M, Hosseinzadeh K, Ganji DD, Case. Stud. Therm. Eng., 21, 100666, 2020
  7. Gholinia M, Ranjbar AA, Javidan M, Hosseinpour AA, Energy Rep., 7, 6844, 2021
  8. Dewan A, Srivastava P, J. Therm. Sci., 24, 203, 2015
  9. Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A, Exp. Therm. Fluid. Sci., 91, 509, 2018
  10. Garimella SV, Singhal V, Heat. Transfer. Eng., 25, 15, 2004
  11. Mohammed HA, Gunnasegaran P, Shuaib NH, Int. Commun. Heat Mass Transf., 38, 474, 2011
  12. Gholinia M, Moosavi SAHK, Gholinia S, Ganji DD, Heat. Transf. Asian. Res., 48, 3278, 2019
  13. Ghobadi AH, Armin M, Hassankolaei SG, Hassankolaei MG, Int. J. Amb. Energy, 41, 1, 2020
  14. Gholinia M, Armin M, Ranjbar AA, Ganji DD, Case. Stud. Therm. Eng., 14, 100490, 2019
  15. Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD, J. Taiwan. Inst. Chem. E., 97, 12, 2019
  16. Yagodnitsyna AA, Kovalev AV, Bilsky AV, J. Phys. Confer., 899, 032026, 2017
  17. Kumar P, Int. J. Therm. Sci., 136, 33, 2019
  18. Xu M, Lu H, Gong L, Chai JC, Duan X, Int. Commun. Heat Mass Transf., 76, 348, 2016
  19. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. Commun. Heat Mass Transf., 53, 2760, 2010
  20. Mohammed HA, Gunnasegaran P, Shuaib NH, Int. Commun. Heat Mass Transf., 38, 63, 2011
  21. Chai L, Xia G, Wang L, Zhou M, Cui Z, Int. J. Heat Mass Transf., 62, 741, 2013
  22. Xia G, Chai L, Zhou M, Wang H, Int. J. Therm. Sci., 50, 411, 2011
  23. Chai L, Xia GD, Wang HS, Int. J. Heat Mass Transf., 97, 1069, 2016
  24. Chai L, Xia GD, Wang HS, Int. J. Heat Mass Transf., 97, 1091, 2016
  25. Garg H, Negi VS, Wadhwa AS, Lall AK, RAECS, 1, 2014
  26. Wang G, Chen T, Tian M, Ding G, Int. J. Heat Mass Transf., 148, 119142, 2020
  27. Ghani IA, Sidik NAC, Mamat R, Najafi G, Ken TL, Asako Y, Japar WMAA, Int. J. Heat Mass Transf., 114, 640, 2017
  28. Chai L, Xia G, Zhou M, Li J, Qi J, Appl. Therm. Eng., 51, 880, 2013
  29. Shi Z, Dong T, Energy Conv. Manag., 94, 493, 2015
  30. Zhang J, Zhao Y, Diao Y, Zhang Y, Int. J. Heat Mass Transf., 84, 511, 2015
  31. Ambreen T, Kim MH, Int. J. Heat Mass Transf., 120, 490, 2017
  32. Manay E, Akyürek EF, Sahin B, Results. Phys., 9, 615, 2018
  33. Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD, Heat. Transf. Asian. Res., 48, 744, 2019
  34. Ghobadi AH, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4133, 2019
  35. Hosseinzadeh K, Afsharpanah F, Zamani S, Gholinia M, Ganji DD, Case. Stud. Therm. Eng., 12, 228, 2018
  36. Khandouzi O, Pourfallah M, Yoosefirad E, Shaker B, Gholinia M, Mouloodi S, J. Energy Storage., 37, 102464, 2021
  37. Shahlaei S, Hassankolaei MG, Heat. Transf. Asian. Res., 48, 4152, 2019
  38. Li J, Peterson GP, Int. J. Heat Mass Transf., 50, 2895, 2007
  39. Chen Y, Fu P, Zhang C, Shi M, Int. J. Heat Fluid Flow, 31, 622, 2010
  40. Mohd-Ghazali N, Jong-Taek O, Chien NB, Kwang-Il C, Zolpakar NA, Ahmad R, Energy Procedia, 61, 55, 2014
  41. Adham AM, Mohd-Ghazali N, Ahmad R, Arab. J. Sci. Eng., 39, 7211, 2014
  42. Lv H, Chen X, Zeng X, Chaos. Soliton. Fract., 148, 111048, 2021
  43. Cheng KX, Foo ZH, Ooi KT, Int. Commun. Heat Mass Transf., 111, 104456, 2020
  44. Yun JY, Lee KS, Int. J. Heat Mass Transf., 43, 2529, 2000
  45. Liu Y, Cui J, Li W, Zhang N, J. Heat Transf. -Trans. ASME, 133, 12, 2011
  46. Alperen Y, Sertac C, Int. J. Heat Mass Transf., 146, 118847, 2020