Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1936-1945, 2022
Deep dechlorination of hydrocarbon oil by reactive adsorption on TiO2-based metal oxides
This study reports reactive adsorptive dechlorination of hydrocarbon oil over TiO2-based metal oxides at the temperatures of 20-150 ℃. TiO2 and a series of TiO2-CeO2 were prepared by precipitation method and characterized by N2 adsorption, XRD, FT-IR, pyridine-IR, NH3-TPD and CO2-TPD. The characterization results showed that both the acidity and basicity of the adsorbent had a significant impact on its dechlorination capacity. TiO2-U precipitated by urea exhibited higher dechlorination capacity than TiO2-A precipitated by ammonia due to the higher surface area, more acid and base amounts of the former. Among various Ti(1-x)CexO2 (x=0.1, 0.3, 0.5, 0.7, 0.9, 1) oxides, Ti0.7Ce0.3O2 and Ti0.3Ce0.7O2 bimetallic oxides showed higher dechlorination capacity than TiO2-U, and the chlorine removal over Ti0.7Ce0.3O2 reached 82.8% after adsorption at 150 oC for 3 h. Mixing 5 wt% of alkali earth metal oxide into Ti0.7Ce0.3O2 mechanically enhanced its dechlorination capacity, and the chlorine removal over Ti0.7Ce0.3O2-BaO reached as high as 92.1%. The chlorine removal increased with increasing the adsorption temperature. Ion chromatography and GC-MS analysis revealed that organochlorine compound was converted into Cl and its corresponding alcohol over the adsorbent at 150 ℃. Finally, the mechanism of reactive adsorption dechlorination was proposed.
[References]
  1. Niu H, Zhao D, Xie G, Yuan Y, Zhang W, Zhang C, Li C, Cui L, Fuel, 304, 121410, 2021
  2. Ge XL, Shi L, Wang X, Ind. Eng. Chem. Res., 53, 6351, 2014
  3. Jiang GZ, Monsalve DAS, Clough P, Jiang Y, Leeke GA, Acs Sustain. Chem. Eng., 9, 1576, 2021
  4. Wu B, Li Y, Li X, Zhu J, Energy Fuels, 29, 1391, 2015
  5. Xu L, Stangland EE, Dumesic JA, Mavrikakis M, Acs Catal., 11, 7890, 2021
  6. Zhao P, Huang N, Li J, Cui X, Fuel Process. Technol., 199, 106277, 2020
  7. Soni VK, Singh G, Vijayan BK, Chopra A, Kapur GS, Ramakumar SSV, Energy Fuels, 35, 12763, 2021
  8. Palos R, Gutiérrez A, Vela FJ, Olazar M, Arandes JM, Bilbao J, Energy Fuels, 35, 3529, 2021
  9. Ball MR, Rivera-Dones KR, Stangland E, Mavrikakis M, Dumesic JA, J. Catal., 370, 241, 2019
  10. Sun J, Han Y, Fu H, Wan H, Xu Z, Zheng S, Appl. Surf. Sci., 428, 703, 2018
  11. Khaleel A, Microporous Mesoporous Mater., 91, 53, 2006
  12. Lingaiah N, Uddin MA, Muto A, Sakata Y, Murata K, Appl. Catal. A: Gen., 207, 79, 2001
  13. Zhang N, Li R, Zhang G, Dong L, Li TJAO, Acs Omega, 5, 11987, 2020
  14. Chen J, Zhao X, Ying Z, China Pet. Process Pe., 19, 23, 2017
  15. Mu Y, Zhan G, Huang C, Wang X, Ai Z, Zou J, Luo S, Zhang L, Environ. Sci. Technol., 53, 3208, 2019
  16. Najafi V, Ahmadi E, Ziaee F, Iran. Polym. J., 27, 841, 2018
  17. Lee SR, Cho JM, Son M, Park MJ, Kim WY, Kim SY, Bae JW, Chem. Eng. J., 331, 56, 2018
  18. Ge X, Shi L, Wang X, Ind. Eng. Chem. Res., 53, 6351, 2014
  19. Uddin M, Muto A, Imai T, Sakata Y, Fuel, 80, 1901, 2001
  20. Jiang G, Monsalve D, Clough P, Jiang Y, Leeke GA, ACS Sustain. Chem. Eng., 9, 1576, 2021
  21. Lopez-Urionabarrenechea A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Fuel Process. Technol., 137, 229, 2015
  22. Zhu W, Xu Y, Li H, Dai B, Xu H, Wang C, Chao Y, Liu H, Korean J. Chem. Eng., 31, 211, 2014
  23. Chen SS, Hsi HC, Nian SH, Chiu CH, Appl. Catal. B: Environ., 160, 558, 2014
  24. Guo J, Watanabe S, Janik MJ, Ma X, Song C, Catal. Today, 149, 218, 2010
  25. Zhang W, Li X, Wang H, Song Y, Zhang S, Li C, Korean J. Chem. Eng., 34, 3132, 2017
  26. Xiao J, Sitamraju S, Chen Y, Watanabe S, Fujii M, Janik M, Song C, AIChE J., 61, 631, 2015
  27. Xiao XC, Peng BG, Cai LF, Zhang XM, Liu SR, Wang YD, Sci. Rep., 8, 7571, 2018
  28. Wang YJ, Ma JM, Luo MF, Fang P, He M, J. Rare Earth, 25, 58, 2007
  29. Zhang W, Li X, Wang H, Song YJ, Zhang SH, Li CQ, Korean J. Chem. Eng., 34, 3132, 2017
  30. Wang X, Chen C, Chang Y, Liu H, J. Hazard. Mater., 161, 815, 2009
  31. Zhen H, Qian X, Hu Y, Cheng J, Chem. Eng. J., 209, 547, 2012
  32. Watanabe S, J. Phy. Chem. C, 113, 14249, 2009
  33. Dahl M, Liu Y, Yin Y, Chem. Rev., 114, 9853, 2014
  34. Adamczyk A, Długon E, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 89, 11, 2012
  35. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Anderson MA, Soria J, Catal. Today, 143, 364, 2009
  36. Xie M, Jing L, Jia Z, Lin J, Fu H, J. Hazard. Mater., 176, 139, 2010
  37. Parthasarathy P, Vivekanandan S, Ain Shams Eng. J., 11, 777, 2020
  38. Sun Z, Takahashi F, Yu O, Fukushi K, Oshima Y, Yamamoto K, Chemosphere, 66, 151, 2007
  39. Lu J, Ma S, Gao J, Freitas J, Bonagamba TJ, J. Appl. Polym. Sci., 90, 3252, 2010
  40. Lu J, Ma S, Gao J, Energy Fuels, 16, 1251, 2002
  41. Song H, Gao H, Song H, Yang G, Li X, Ind. Eng. Chem. Res., 55, 3813, 2016
  42. Lee C, Jin Y, Kim J, Park SH, Chun BH, Kim SH, J. Ind. Eng. Chem., 19, 1443, 2013
  43. Zhou Y, Li XY, Hou SL, Xu JX, J. Mol. Catal. A-Chem., 365, 203, 2012
  44. Li S, Liu G, Zhang S, An K, Ma Z, J. Energy Chem., 43, 167, 2020
  45. Lingaiah N, Uddin MA, Morikawa K, Muto A, Sakata Y, Murata K, Green Chem., 3, 74, 2001