Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 942-953, 2022
Influence of Ag/Cu photodeposition on CaTiO3 photocatalytic activity for degradation of Rhodamine B dye
The present work outlines a simple sol-gel method for the synthesis of CaTiO3 (CTO) nanoparticles followed by modification with Ag, Cu via photodeposition. Different amounts (1 to 5wt%) of Ag and Cu were loaded over CTO to form Ag/Cu-CTO nanocomposites. Several characterization techniques, such as XRD, UV-DRS, SEM, EDS, HRTEM and photoluminesence, were employed to study their structural and physicochemical properties. The photocatalytic performance of as-prepared samples was assessed by degrading Rhodamine B dye under UV irradiation. Results indicate that Ag/Cu deposition significantly enhanced the photocatalytic activity of CTO, depending upon the amount of metal loading. It found that 1 wt% Ag-CTO composite exhibited the highest (98%) photoactivity within 90 mins in contrast to 82% and 57% degradation achieved by 1 wt% Cu-CTO and bare CTO, respectively. The degradation process followed pseudo-first-order kinetics with rate constants of k=4.5×10-2 min-1 for Ag-CTO relative to k=1.8×10-2 min-1 of Cu-CTO and k=0.86×10-2 min-1 of bare. The improved photocatalytic activity was credited to the increased optical absorption and quick transfer of photoinduced electrons from CaTiO3 conduction band to Ag and Cu deposits that probably retards the charge-carriers recombination as evident by their observed photoluminance behavior.
[References]
  1. Kurian M, Clean. Eng. Technol., 2, 100090, 2021
  2. Gutierrez-Mata AG, Velazquez-Martínez S, Álvarez-Gallegos A, Ahmadi M, Hernández-Pérez JA, Ghanbari F, Silva-Martínez S, Int. J. Photoenergy, 2017, 1, 2017
  3. Atta NF, Galal A, El-Ads EH, Perovskite Materials - synthesis, characterization, properties, and applications, IntechOpen, London, UK (2016).
  4. Assirey EAR, Saudi Pharm. J., 27, 817, 2019
  5. Huang X, Zhao G, Wang G, Irvine JTS, Chem. Sci., 9, 3623, 2018
  6. Kumar A, Kumar A, Krishnan V, ACS Catal., 10, 10253, 2020
  7. Kanhere P, Chen Z, Molecules, 19, 19995, 2014
  8. Nguyen VH, Do HH, Van Nguyen T, Singh P, Raizada P, Sharma A, Sana SS, Grace AN, Shokouhimehr M, Ahn SH, Xia C, Kim SY, Van Le Q, Sol. Energy, 211, 584, 2020
  9. Jiang E, Yang L, Song N, Zhang X, Liu C, Dong H, J. Colloid Interface Sci., 576, 21, 2020
  10. Pan J, Jiang Z, Feng S, Zhao C, Dong Z, Wang B, Wang J, Song C, Zheng Y, Li C, Int. J. Hydrog. Energy, 43, 19019, 2018
  11. Han J, Liu Y, Dai F, Zhao R, Wang L, Appl. Surf. Sci., 459, 520, 2018
  12. Passi M, Pal B, Powder Technol., 388, 274, 2021
  13. Yan Y, Yang H, Yi Z, Li R, Xian T, Solid State Sci., 100, 106102, 2020
  14. Zhuang J, Tian Q, Lin S, Yang W, Chen L, Liu P, Appl. Catal. B: Environ., 156, 108, 2014
  15. Yan Y, Yang H, Yi Z, Xian T, Wang X, Environ. Sci. Pollut. Res., 26, 29020, 2019
  16. Lanfredi S, Matos J, da Silva SR, Djurado E, Sadouki AS, Chouaih A, Poon PS, González ERP, Nobre MAL, Appl. Catal. B: Environ., 272, 118986, 2020
  17. Yatish KV, Lalithamba HS, Suresh R, Latha HKE, Renew. Energy, 147, 310, 2020
  18. Yang H, Han C, Xue X, JES, 26, 1489, 2014
  19. Chen X, Di L, Yang H, Xian T, J. Ceram. Soc. Jpn., 127, 221, 2019
  20. Deng B, Si P, Bauman L, Luo J, Rao M, Peng Z, Jiang T, Li G, Zhao B, J. Clean Prod., 244, 118598, 2019
  21. Bai L, Xu Q, Cai Z, J. Mater. Sci. -Mater. Med., 29, 17580, 2018
  22. Oliveira LH, De Moura AP, La Porta FA, Nogueira IC, Aguiar EC, Sequinel T, Rosa ILV, Longo E, Varela JA, Mater. Res. Bull., 81, 1, 2016
  23. Wang R, Ni S, Liu G, Xu X, Appl. Catal. B: Environ., 225, 139, 2018
  24. Oliveira LH, Savioli J, De Moura AP, Nogueira IC, Li MS, Longo E, Varela JA, Rosa ILV, J. Alloy. Compd., 64, 265, 2015
  25. Science C, Jiajian G, Gu F, Zhong Z, Catal. Sci. Technol., 3, 490, 2013
  26. Shimura K, Yoshida H, Energy Environ. Sci., 3, 615, 2010
  27. Han C, Liu J, Yang W, Wu Q, Yang H, Xue X, J. Photochem. Photobiol. A-Chem., 322, 1, 2016
  28. Lin J, Hu J, Qiu C, Huang H, Chen L, Xie Y, Zhang Z, Lin H, Wang X, Catal. Sci. Technol., 9, 336, 2019
  29. Jiang Z, Pan J, Wang B, Li C, Appl. Surf. Sci., 436, 519, 2018
  30. Liu Y, Pan J, Li H, Ou W, Li S, Zhao W, Wang J, Song C, Zheng Y, Li C, J. Alloy. Compd., 811, 152067, 2019
  31. Xian T, Yang H, Huo YS, Phys. Scr., 89, 115801, 2014
  32. Kumar A, Kumar S, Bahuguna A, Kumar A, Sharma V, Krishnan V, Mater. Chem. Front., 1, 2391, 2017
  33. Kumar A, Schuerings C, Kumar S, Kumar A, Krishnan V, Beilstein J. Nanotechnol., 9, 671, 2018
  34. Fu YS, Li J, Li J, Nanomaterials, 9, 359, 2019
  35. Shawky A, Alhaddad M, Al-Namshah KS, Mohamed RM, Awwad NS, J. Mol. Liq., 304, 3, 2020
  36. Alzahrani A, Barbash D, Samokhvalov A, J. Phys. Chem. C, 120, 19970, 2016
  37. Lee SW, Lozano-Sánchez LM, Rodríguez-González V, J. Hazard. Mater., 263, 20, 2013
  38. Yan Y, Yang H, Yi Z, Li R, Wang X, Micromachines, 10, 1, 2019
  39. Bhardwaj S, Pal B, Adv. Powder Technol., 29, 2119, 2018
  40. Zhang H, Chen G, Li Y, Teng Y, Int. J. Hydrog. Energy, 35, 2713, 2010
  41. Kaur J, Pal B, Environ. Sci. Pollut. Res., 20, 3956, 2013
  42. Dong W, Bao Q, Gu X, Zhao G, J. Ceram. Soc. Jpn., 123, 643, 2015
  43. Doan VD, Huynh BA, Nguyen TD, Cao XT, Nguyen VC, Nguyen TLH, Nguyen HT, Le VT, J. Nanomater., 2020, 8492016, 2020
  44. Zhai Y, Ji Y, Wang G, Zhu Y, Liu H, Zhong Z, Su F, RSC Adv., 5, 73011, 2015
  45. Liqiang J, Yichun Q, Baiqi W, Shudan L, Baojiang J, Libin Y, Wei F, Honggang F, Jiazhong S, Sol. Energy Mater. Sol. Cells, 90, 1773, 2006
  46. Yan X, Huang X, Fang Y, Min Y, Wu Z, Li W, Yuan J, Int. J. Electrochem. Sci., 9, 5155, 2014
  47. Oros-Ruiz S, Zanella R, Prado B, J. Hazard. Mater., 26, 328, 2013
  48. Gnanaprakasam A, Sivakumar VM, Thirumarimurugan M, Water Sci. Technol., 74, 1426, 2016
  49. Luo B, Xu D, Li D, Wu G, Wu M, Shi W, Chen M, ACS Appl. Mater. Interfaces, 7, 17061, 2015
  50. Fageria P, Gangopadhyay S, Pande S, RSC Adv., 4, 24962, 2014
  51. Türkyılmaz SS, Güy N, Özacar M, J. Photochem. Photobiol. A-Chem., 341, 39, 2017