Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2347-2352, 2021
Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode
The performance of yeast-based microbial fuel cells (MFCs) and the growth pattern of yeast were evaluated with the optimization of dead zone within carbon felt (CF) electrode. Yeast cells were grown onto the different CFs that have 1 to 4mm thicknesses, while optical and electrochemical evaluations were implemented to determine the optimal growth pattern of yeast and to elucidate a relationship between the growth pattern of yeast and the performance of MFC. According to the evaluations, biofilm consisting of high-density yeast cells is formed in the upper 1mm height of CF electrode. As the height goes down, density of yeast cells is reduced to less than half of the upper biofilm, and by calculating the growth rate of yeast cells per CF volume, it is recognized that the coverage of biocatalyst including yeast cell increases from 0.191 to 0.406 μmol/cm3 with decreasing CF thickness. Then, the performance of MFCs using biocatalysts including yeast cells grown on different thick CFs is measured to investigate how the growth pattern of yeast cells affects the performance of MFCs. Results show their maximum power density (MPD) increases linearly as the area that yeast cells are filled increases, and when CF thickness is 1mm, MPD reaches 417.13 W/m3.
[References]
  1. Kim JR, Jung SH, Regan JM, Logan BE, Bioresour. Technol., 98(13), 2568, 2007
  2. Schaetzle O, Barriere F, Baronian K, Energy Environ. Sci., 1, 607, 2008
  3. Wang Y, Chen Y, Wen Q, Zheng H, Xu H, Qi L, Energy, 189, 116342, 2019
  4. Min B, Logan BE, Environ. Sci. Technol., 38, 5809, 2004
  5. Min B, Kim JR, Oh SE, Regan JM, Logan BE, Water Res., 39, 4961, 2005
  6. Rabaey K, Lissens G, Siciliano SD, Verstraete W, Biotechnol. Lett., 25(18), 1531, 2003
  7. Kim SJ, Yang PY, Water Sci. Technol., 49, 281, 2004
  8. Kim JR, Zuo Y, Regan JM, Logan BE, Biotechnol. Bioeng., 99(5), 1120, 2008
  9. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K, Environ. Sci. Technol., 40, 5181, 2006
  10. Guo K, Soeriyadi AH, Patil SA, Prevoteau A, Freguia S, Gooding JJ, Rabaey K, Electrochem. Commun., 39, 1, 2014
  11. Cornejo JA, Lopez C, Babanova S, Santoro C, Artyushkoya K, Ista L, Schuler AJ, Atanassov P, J. Electrochem. Soc., 162(9), H597, 2015
  12. Fu L, Wang H, Huang Q, Song T, Xie J, Bioprocess Biosyst. Eng., 43, 373, 2020
  13. Liang YX, Feng HJ, Shen DS, Li N, Guo K, Zhou YY, Xu J, Chen W, Jia YF, Huang B, J. Power Sources, 342, 98, 2017
  14. Fan Y, Xu S, Schaller R, Jiao J, Chaplen F, Liu H, Biosens. Bioelectron., 26, 1908, 2011
  15. Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, Appl. Energy, 222, 369, 2018
  16. Chen X, Cui D, Wang X, Wang X, Li W, Biosens. Bioelectron., 69, 135, 2015
  17. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH, ISME J., 1, 9, 2007
  18. Logan BE, Nat. Rev. Microbiol., 7, 375, 2009
  19. Christwardana M, Frattini D, Duarte KDZ, Accardo G, Kwon Y, Appl. Energy, 238, 239, 2019
  20. Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, J. Power Sources, 396, 1, 2018
  21. Duarte KDZ, Frattini D, Kwon Y, Appl. Energy, 256, 113912, 2019
  22. Frattini D, Accardo G, Duarte KDZ, Kim DH, Kwon Y, Appl. Energy, 261, 114391, 2020
  23. Zhao Y, Ma Y, Li T, Dong Z, Wang Y, RSC Adv., 8, 2059, 2018
  24. Feng YJ, Yang Q, Wang X, Logan BE, J. Power Sources, 195(7), 1841, 2010
  25. Hubenova YV, Rashkov RS, Buchvarov VD, Arnaudova MH, Babanova SM, Mitov MY, Ind. Eng. Chem. Res., 50(2), 557, 2011
  26. Rawson FJ, Gross AJ, Garrett DJ, Downard AJ, Baronian KHR, Electrochem. Commun., 15, 85, 2012
  27. Christwardana M, Kwon Y, Bioresour. Technol., 225, 175, 2017
  28. Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500, 2019
  29. Yang SW, Chung YJ, Lee KS, Kwon YC, J. Ind. Eng. Chem., 90, 351, 2020
  30. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916, 2017
  31. Christwardana M, Frattini D, Accardo G, Yoon SP, Kwon Y, J. Power Sources, 402, 402, 2018
  32. Verstrepen KJ, Klis FM, Mol. Microbiol., 60, 5, 2006
  33. Duarte KDZ, Kwon Y, J. Power Sources, 474, 228496, 2020
  34. Duarte KDZ, Kwon Y, J. Power Sources, 474, 228651, 2020
  35. Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z, Mol. Microbiol., 47, 745, 2003
  36. Vachova L, Stovi V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, Palkova Z, J. Cell Biol., 194, 679, 2011
  37. Fotouhi L, Fatollahzadeh M, Heravi MM, Int. J. Electrochem. Sci., 7, 3919, 2012
  38. Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM, Energy Environ. Sci., 2, 506, 2009